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1 Maximum Likelihood Estimation and KL Divergence

Notation Unless specified otherwise, all the distributions are assumed to be defined on X := Rd, where
d denotes the dimension. To avoid measure theoretical terminologies, we represent all the distributions on
Rd using their density functions; for distributions exists no density functions, Delta functions are used.
For example, q(x) = δ(x− xi) represents the atomic measure that concentrates probability around xi.

Given data {xi}, we want to learn a distribution p(~x) to match the data as close as possible. Assume we
already have a family of distribution that we want to select from:

P = {pθ(x) : θ ∈ Θ},

where this set of distributions is indexed by some parameter θ. An example is the family of Gaussian
distributions, P = {N (x; µ,Σ): µ ∈ Rd, Σ � 0}, where θ = {µ, Σ} is the parameter, consisting of both
the means and variances.

The data can be equivalently presented using its empirical distribution:

q̂n(x) =
1

n

n∑
i=1

δ(x− xi).
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As a general framework, we can formulate the search of the optimal pθ that fits the data distribution q
best as an optimization problem:

min
θ
D(q̂n || pθ),

where D is some notion of “distance” or “divergence” measure, that satisfies D(q || p) ≥ 0 and p = q iff
D(q || p) = 0.

The most basic way to achieve this is using Kullback-Leibler (KL) divergence: For any two distributions
p and q, their KL divergence is defined as

KL(q || p) = Eq
[
log

(
q(x)

p(x)

)]
.

Theorem 1.1. 1) For any p and q, we have KL(q || p) ≥ 0.

2) KL(q || p) = 0, if and only if q = p.

Proof. Recall Jensen’s inequality: if h(z) is a convex function, we have E[h(z)] ≥ h(E[z]), for any random
variable z. If h is strictly convex, and E[h(z)] = h(E[z]), then z must be deterministic. Note that − log(x)
is a strictly convex function.

Denote by Sq the support of q, that is, Sq = {x : q(x) > 0}. We have

Eq
[
p(x)

q(x)

]
=

∫
Sq

q(x)
p(x)

q(x)
dx =

∫
Sq

p(x)dx = Ep[I(x ∈ Sq)] ≤ 1.

Therefore, we have log(Eq[p(x)/q(x)]) ≤ 0. Hence

KL(q || p) = Eq
[
− log

(
p(x)

q(x)

)]
≥ Eq

[
− log

(
p(x)

q(x)

)]
+ log

(
Eq
[
p(x)

q(x)

])
//Lemma 1.2

≥ 0 //Jensen’s inequality with h(x) = − log(x).

2) We just need to prove that KL(q || p) = 0 implies p = q. Because − log is strictly convex, when
KL(q || p) = 0, we must have p(x)/q(x) = c for some constant c. Hence, KL(q || p) = Eq[− log(p(x)/q(x))] =
− log c. But KL(q || p) = 0, we have c = 1. This suggests p(x)/q(x) = 1 for x ∼ Sq, and there is no prob-
ability mass of p outside of Sq because

∫
x/∈Sq p(x)dx =

∫
Ω p(x)dx−

∫
Sq
p(x)dx =

∫
Ω p(x)dx−

∫
Sq
q(x)dx =

1− 1 = 0. This completes the proof.

Problem 1.1. 1) The χ-square divergence between p and q is defined by χ2(q || p) = Ep
[(

q(x)
p(x) − 1

)2
]

.

Prove
KL(q || p) ≤ χ2(q || p).

2) Prove that KL(q || p) is a convex function of (p, q), that is, for any (p1, q1) and (p2, q2) and α ∈ [0, 1],
we have

KL(αq1 + (1− α)q2 || αp1 + (1− α)p2) ≤ αKL(q1 || p1) + (1− α)KL(q2 || p2).
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Remark p is said to be absolutely continuous w.r.t. q (denoted by p� q), if there exists a measurable
function f , such that p(x) = f(x)q(x). This is equivalent to that q(x) = 0 =⇒ p(x) = 0. When p is
absolutely continuity w.r.t. Lebesgue measure, we simply say that p is absolutely continuity ; these are
distributions that have (non-delta) density functions.

The following result plays an important role for importance sampling, which we will discuss later.
{lem:pqmean}

Lemma 1.2. If p is absolutely continuous w.r.t q, that is, p� q, we have

Ex∼q
[
p(x)

q(x)

]
= 1.

Proof. Because p� q, we can write p(x) = f(x)q(x) for all x ∈ X . We have

Ex∼q
[
p(x)

q(x)

]
= Ex∼q [f(x)] =

∫
q(x)f(x)dx =

∫
p(x)dx = 1.

Maximum Likelihood When q̂n is an empirical distribution of the dataset {xi}, we have KL(q̂n || pθ) =
+∞ according the definition. However, it turns out that the “the infinite part is a constant” and it is
still possible to minimize KL divergence in this case. Note that

KL(q || pθ) = −H[q]− Eq[log pθ],

where H[q] := −Eq[log q] is the entropy of q. When q = q̂n, we have H[q] = −∞ and hence causing
KL(q || p) = +∞. However, observe that H[q] does not depend on the parameter θ we want to optimize.
Minimizing KL divergence is hence equivalent to maximizing the negative of the second term:

θ̂n := arg max
θ

{
L(θ) := Eq̂n [log pθ] =

1

n

n∑
i=1

log pθ(xi)

}
,

where L(θ) is called the log-likelihood function, and θ̂n is called the maximum likelihood estimator.

Problem 1.2. Consider Gaussian family with

pθ(x) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

where θ = [µ,Σ]. Given data {xi}ni=1, please derive that the maximum likelihood estimator of µ and Σ.
Note that Σ is constrained to be in the set of positive definite matrices in the optimization.

Problem 1.3. 1) Assume the true data distribution q is the uniform distribution on interval [−1, 1] and
pθ is Gaussian distribution N (µ, σ2), with θ = [µ, σ], σ ≥ 0. When given an iid observation {xi}ni=1 ∼ q,
please derive the MLE estimator θ̂n. Calculate the limit limn→∞ θn as we have inifinite number of data.

2) Assume the data distribution is q is standard normal N (0, 1) and set pθ(x) = Uniform([a, b]), where
θ = [a, b] is the parameter. So this case, we want to find a best uniform distribution to find with data
generated from Gaussian distribution. When given an iid observation {xi}ni=1 ∼ q, please derive the MLE
estimator θ̂n. Calculate the limit limn→∞ θn as we have inifinite number of data.
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2 Concentration Inequalities, Law of Large Numbers, Central Limit
Theorem

Theorem 2.1 (Markov Inequality). Let X be a non-negative random variable on R with finite mean
µ := E[X] <∞, and a > 0 is any constant, we have

Pr(X ≥ a) ≤ E[X]

a

Proof. Define function σ(X) = aI(X ≥ a). It is clear that σ(X) ≤ X for any X. We have

E[X] ≥ E[σ(X)] = E[aI(X ≥ a)] = aPr(X ≥ a),

where we note that E[I(X ≥ a)] = Pr(X ≥ a).

Theorem 2.2 (Chebyshev Inequality). Let X be any random variable on R with finite mean µ = E[X]
and variance σ2 = E[(X − µ)2]. We have

Pr(|X − µ| ≥ ε) ≤ σ2

ε2

Proof. Take |X − µ| as a non-negative random variable and apply Markov inequality.

Problem 2.1 (Tightness of Markov Inequality). 1) For a given µ, a ∈ R+, solve the following optimiza-
tion:

max
X
{ Pr(X ≥ a) s.t. E[X] = µ} ,

where the optimization is overall all possible non-negative random variables.

2) Why is it necessary to require that X is non-negative?

3) Solve
max
X
{Pr(|X − µ| ≥ ε) s.t. E[X] = µ, E[(X − µ)2] = σ2, }

where the optimization is overall all possible random variables on R.

Definition 2.3 (Convergence of Random Variables ). A sequence of random variables S1, . . . , Sn on R
is said to converge in probability to a real number a if for any ε > 0,

lim
n→∞

Pr(|Sn − a| ≥ ε)→ 0.

This is denoted by Sn
p−→ a.

S1, . . . , Sn is said to converge almost surely to a if

Pr( lim
n→∞

Sn = a) = 1.

This is denoted by Sn
a.s.−→ a.

convergence almost surely implies Convergence in probability, but the other way is not always true.

5
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Theorem 2.4 (Weak Law of Large Numbers (LLN) with Finite Variance). Assume X1, . . . , Xn is a set
of identical and independently (iid) random variables with finite mean µ and variance σ2. Define

Sn =
1

n
(X1 + · · ·+Xn) .

We have for any ε > 0,

Pr(|Sn − µ| ≥ ε) ≤
σ2

nε2
.

Therefore, Sn converges to µ in probability.

Proof. Assume µ = 0 without loss of generality. Note that

var(Sn) =
1

n2
E[(X1 + · · ·+Xn)2]

=
1

n2

n∑
i=1

E[X2
i ]

=
σ2

n
.

Applying Chebyshev inequality gives the result.

The most general form of law of large number theorem does not require to assume finite variance. The
proof for the case of infinite variance can be done using characteristic function. Check yourself.

We also have strong LLN which establish the convergence of almost surely (see Section 1.7 [6]).

Theorem 2.5 (Strong Law of Large Numbers). Let X1, X2, · · · be pairwise independent identically dis-
tributed random variables with E[|Xi|] <∞. Let E[Xi] = µ, and Sn = (X1 + · · ·+Xn)/n. Then Sn

a.s.−→ µ
as n→∞.

In many problems in statistical learning theory, we need uniform law of large numbers. See Lemma 2.4
of Newey and McFadden [17] and Theorem 2 of Jennrich [12].

{thm:parauniformlaw}

Theorem 2.6 (Uniform Law of Large Numbers). Let X1, X2, . . . are i.i.d. random variables. Let
{g(x; θ) : θ ∈ Θ} is a family of functions such that

1) Θ is a compact subset of a finite dimensional Euclidean space.

2) g is continuous in θ for each x.

3)We have |g(x; θ)| ≤M(x) for some M with E[M(X1)] <∞.

Then we have

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

g(Xi; θ)− g(X; θ)

∣∣∣∣∣ a.s.−→ 0.

Basically, the idea of proving the uniform law is by covering. If Θ contains only finite number of elements,
then the result follows trivially. If Θ has infinite number of elements, we then approximately cover Θ
with a finite subset.

6
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todo Specifically, for any ε0 > 0, because Θ is compact, there exists a finite set {θi}, such that for
any θ ∈ Θ, there exists a θi, such that ||θ − θi|| ≤ ε. If {g(x; θ)} is equicontinuous, in that we have
||g(x; θ)− g(x; θ′)||∞ ≤ whenever ||θ − θ′|| ≤ δ0, then we can show the convergence by ...

Generally, A class of functions F is called a Glivenko-Cantelli class with respect to a probability
measure P if

sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ a.s.−→ 0. (1){equ:fsup}{equ:fsup}

where X,X1, · · · are i.i.d from P . A function class is a universal Glivenko-Cantelli class if (1) holds
for any measure P .

The trivial case when (1) is when number of functions in F is finite. Mathematical conditions of Glivenko-
Cantelli class has been a central topic in statistics and learning theory, and closely relates to the key notion
of overfiting and generalizability. For example, one fundamental result in learning theory is that if F has
a finite Vapnik-Chervonenkis (VC) dimension, then it is a universal Glivenko-Cantelli class. See Vapnik
[27], van de Geer [26].

2.1 Central Limit Theorem

Definition 2.7 (Convergence in Distribution). 1) A sequence X1, X2, · · · of real-valued random variables
in R is said to converge in distribution, or converge weakly, or converge in law to a random
variable X if

lim
n→∞

Fn(x) = F (x),

for every number x ∈ R at which F is continuous. Here Fn and F are the cumulative distribution functions
of random variables Xn and X, respectively.

2) In Rd, weak convergence is defined by the following two equivalent statements:

a) limn→∞ E[h(Xn)] = E[h(X)] for all bounded, continuous functions.

b) limn→∞ E[h(Xn)] = E[h(X)] for all bounded, Lipschitz functions.

Theorem 2.8 (Central Limit Theorem). Assume X,X1, . . . , Xn is a set of identical and independently
(iid) random variables with finite mean µ and variance σ2. Define

Sn =
1

n
(X1 + · · ·+Xn) .

We have √
n(Sn − µ)

d−→ N (0, σ2),

where
d−→ denotes convergence in distribution.

Proof. Recall that the characteristic function of a random variable X is defined to be

φX(t) = E[exp(itX)].

where i is the imaginary unit, recall that exp(iz) = cos(z) + i sin(z).

7
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By Levy’s continuity theorem (see Section 2.3, Durrett [6]), if Z is a random variable whose characteristic
function φZ(t) is continuous at the origin t = 0, then Sn converges in distribution to S if and only if
the sequence φSn converges pointwise to φZ . Therefore, we just need to prove that φSn converges to the

characteristic function of normal distribution Z ∼ N (0, σ2), which equals φZ(t) = exp(−σ2t2

2 ).

It is known that φX+Y (t) = φX(t)φY (t) and φaX(t) = φX(at). Without loss of generality, assume µ = 0.
We have

φSn(t) = E

exp

 it√
n

n∑
j=1

Xj

 =

n∏
j=1

E
[
exp

(
it√
n
Xj

)]
=

(
φX

(
t√
n

))n
By Taylor expansion,

φX

(
t√
n

)
= E[exp

(
it
√
nX
)
]

= E
[
1 +

it√
n
x+

(itx)2

2n
+ o

(
1

n

)]
= 1 +

it√
n
E[X]− t2

2n
E[X2] + o

(
1

n

)
= 1− t2σ2

2n
+ o

(
1

n

)
.

Therefore,

lim
n→∞

φSn(t) = lim
n→∞

(
φX

(
t√
n

))n
= lim

n→∞

(
1− t2σ2

2n
+ o

(
1

n

))n
= exp

(
− t

2σ2

2

)
//Recall that ex = lim

n→∞

(
1 +

x

n

)n
.

= φZ(t),

Therefore, Sn
d−→ Z, which follows N (0, σ2).

Problem 2.2. Recall that the median m of a random variable X is the minimum number that satisfies
Pr(X ≤ m) ≥ 1/2. Like mean, median also has a central limit theorem. Unlike mean, CLT for median
does not require finite variance. This allows us to construct more robust median estimation.

1) Assume m̂n is the median of X1, . . . , X2n+1 i.i.d. drawn from a non-negative smooth density f on R,
whose true median is m. Please prove

√
n(m̂n −m) ∼ N

(
0,

1

8f(m)2

)
.

2) Generalize the result to derive a CLT for general quantiles (recall that the β-quantile qβ of random
variable X is the minimum number that satisfies Pr(X ≤ qβ) ≥ β, for β ∈ [0, 1]).

Remark 2.1. Check out Stein’s method for an alternative proof of central limit theorem http: // www.

math. nus. edu. sg/ ~ lhychen/ files/ IMS4-pp-1-59. pdf .

8
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Remark 2.2. When X has infinite variance, but with finite E[|X|α] for 1 < α < 2, we can find
proper sequences an and bn, such that bn(Sn − an) converges to some limit distribution called stable
distributions (of which Gaussian is a special case). This draws connection to heavy tail distributions
and extreme value statistics. Check generalized CLT https: // amir. seas. harvard. edu/ files/ amir/

files/ gclt_ evd_ amir_ acre_ 2017_ v2. pdf .

9
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3 Asymptotics of Maximum Likelihood Estimator

Given {xi}ni=1 i.i.d. drawn from an unknown q∗, and a parametric family {qθ : θ ∈ Θ}. The maximum
likelihood estimator is defined to be

θ̂n = arg max
θ

{
Ln(θ) := Ex∼q̂n [log qθ(x)]

}
. (2){equ:mledd}{equ:mledd}

Note that θ̂n depends on the random sample {xi}ni=1 and is hence a random variable.

Recall that our fundamental goal is to minimize the KL divergence between the true and estimated
distributions:

KL(q∗ || qθ) = −H[q∗]− Ex∼q∗ [log qθ(x)].

Because the entropy term does not depend on the parameter θ. We can be evaluate the performance of
θ by the second term, which is called the expected testing likelihood :

L(θ) = E[Ln(θ)] = Ex∼q∗ [log qθ(x)].
{thm:regretMLE}

Theorem 3.1 (Regret of MLE). Assume data {xi}ni=1 is i.i.d. drawn from an unknown distribution q∗.
Let θ̂n be the MLE estimator in (2). Define the regret:

Rn := sup
θ∈Θ

L∗(θ)− L∗(θ̂n)

= KL(q∗ ||qθ̂n)− inf
θ∈Θ

(KL(q∗ ||qθ)).

Then we have

Rn ≤ 2 sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

log qθ(xi)− Eq∗ [log qθ(x)]

∣∣∣∣∣ .
Assume the function set F := {log qθ : θ ∈ Θ} is a Glivenko-Cantelli class w.r.t. q∗ in the sense of (1).

Then we have Rn converges to zero with probability one, i.e., Rn
p−→ 0.

Proof. For any θ ∈ Θ, we have Ln(θ̂n) ≥ L(θ) by the definition of θ̂n. Therefore,

L∗(θ)− L∗(θ̂n) :=
(
L∗(θ)− Ln(θ)

)
+
(
Ln(θ)− Ln(θ̂n)

)︸ ︷︷ ︸
≤0

+
(
Ln(θ̂n)− L∗(θ̂n)

)

≤
∣∣L∗(θ̂n)− Ln(θ̂n)

∣∣ +
∣∣Ln(θ)− L∗(θ)

∣∣
≤ 2 sup

θ∈Θ

∣∣Ln(θ)− L∗(θ)
∣∣

= 2 sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

log qθ(xi)− Eq∗ [log qθ(x)]

∣∣∣∣∣ .
The remaining part follows the definition of Glivenko-Cantelli class.
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Theorem 2.6 shows that F = {log qθ(x) : θ ∈ Θ} is a Glivenko-Cantelli class if (1) Θ is compact, (2)
log qθ(x) is continuous on θ for each x and (3) |g(x, θ)| ≤ M(x) for some M with Ex∼q∗ [M(x)] < ∞.
Also, the set of bounded, Lipschitz functions is a universal Glivenko-Cantelli class. Read more about the
importance of uniform bounds in learning theory in Chapter 2 of [27].

If the model is correctly specified, such that q∗ = qθ∗ ∈ F , then it is expected that θ̂n converges to θ∗
almost surely under some further assumptions. In this case, we say that θ̂n is a consistent estimator.
One of the basic requirement for consistency is that the parameters has to be identifiable, meaning that
there exists no θ1 6= θ2 with qθ1 = qθ2 .

Theorem 3.2 (Consistency of MLE). Assume

(1) Theorem 3.1 holds;

(2) Θ is compact; qθ(x) is continuous w.r.t. θ for every x;

(3) the model is identifiable, that is, there exists no θ1 6= θ2, such that log qθ1(x) = log qθ2(x) for all x;

(4) there is no model specification, that is, q∗ = qθ∗ and θ∗ ∈ Θ.

Then we have
θ̂n

a.s.−→ θ∗.

Proof. Because there is no model misspecification, we have infθ∈Θ KL(qθ∗ || qθ) = 0. By Theorem 3.1, we
have

KL(qθ∗ || qθ̂n)
a.s.−→ 0,

which suggests that qθ̂n
d−→ qθ∗ almost surely.

Because Θ is compact, if θ̂n does not converge to θ∗, there must exists a convergent subsequent {θ̂nk}∞k=1,
whose limit, denote by θ∞, is different from θ∗. For this subsequence, we have

lim
k→∞

KL(qθ∞ || qθ̂nk ) = KL(qθ∞ || qθ∞) = 0,

which is true because KL(qθ∞ || qθ) is a continuous function on θ. This suggests that qθ̂nk
d−→ qθ∞ as

k →∞. But because the limit of convergence in law is unique, we must have qθ∗ = qθ∞ , which contradicts
with θ∞ 6= θ∗ and the identifiability assumption.

Theorem 3.3 (Asymptotic Normality of MLE). Assume θn
a.s.−→ θ∗. Assume ∇θ log qθ(x) yields a Taylor

expansion around θ∗:

∇θ log qθ(x) = ∇θ log qθ∗(x) +∇2
θ,θ log qθ∗(x)(θ − θ∗) +R(θ, θ∗;x)

where R(θ, θ∗;x) is the residual term and satisfies |R(θ, θ∗;x)| ≤M ||θ−θ∗||2 for some constant M . Define
the Fisher information matrix to be

I(θ∗) = covq∗ (∇θ log qθ∗(x))

which we assume is invertible around θ∗. We have

√
n(θ̂n − θ∗)

d−→ N (0, I(θ∗)
−1).

11
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Proof. Note that at the fixed point, we have

Eq̂n [∇θ log qθ̂n(x)] = 0.

Using Taylor expansion, we have

Eq̂n [∇θ log qθ∗(x) +∇2
θ,θ log qθ∗(x)(θ̂n − θ∗) +R(θ̂n, θ∗;x)] = 0.

This gives √
nĴ(θ∗)(θ̂n − θ∗)−

√
nEq̂n [R(θ̂n, θ∗;x)] = ŝ(θ∗),

where we define the empirical Hessian matrix Ĵ(θ̂∗) := −Eq̂n [∇2
θ,θ log qθ∗(x)] and ŝ(θ∗) :=

√
nEq̂n [∇θ log qθ∗(x)]

By Lemma 3.4 and central limit theorem, we have

ŝ(θ∗) :=
√
nEq̂n [∇θ log qθ∗(x)]

d−→ N (0, I(θ∗)).

Therefore,
√
nĴ(θ∗)(θ̂n − θ∗) + Eq̂n [R(θ̂n, θ∗; x)]

d−→ N (0, I(θ∗)).

Because θ̂n
a.s.−→ θ∗, and R(θ, θ∗;x) = o(θn − θ∗), we have

Ĵ(θ∗
√
n((θ̂n − θ∗)− Eq̂n [R(θ̂n, θ∗; x)])

a.s.−→ J(θ∗)
√
n(θ̂n − θ∗),

where J(θ∗) = −Eq∗ [∇2
θ,θ log qθ∗(x)], which equals I(θ∗) according to Lemma 3.4. Therefore,

I(θ∗)
√
n(θ̂n − θ∗)

a.s.−→ N (0, I(θ∗)).

Because I(θ∗) is assumed to be inevitable, we have

√
n(θ̂n − θ∗)

a.s.−→ N (0, I(θ∗)
−1).

{lem:IJ}

Lemma 3.4. Let {qθ(x) : θ ∈ Θ} is a set of second-order differentiable PDFs on Rd, whose support
S = {x ∈ Rd : qθ(x) > 0} does not depend on θ. We have

Eqθ [∇θ log qθ(x)] = 0

covqθ [∇θ log qθ(x)] = −Eqθ [∇
2
θ,θ log qθ(x)].

Proof.

Eqθ [∇θ log qθ(x)] =

∫
S
qθ(x)∇θ log qθ(x)dx

=

∫
S
∇θqθ(x)dx

= ∇θ
∫
S
qθ(x)dx

= ∇θ(1) = 0.

12
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covqθ [∇θ log qθ(x)] + Eqθ [∇
2
θ,θ log qθ(x)] = Eqθ [∇θ log qθ(x)∇θ log qθ(x)> +∇2

θ,θ log qθ(x)]

=

∫
S
∇θ log qθ(x)∇θqθ(x)>dx+∇2

θ,θ log qθ(x)qθ(x)dx

=

∫
S
∇θ
(
∇θ log qθ(x)>qθ(x)

)
dx

=

∫
S
∇θ
(
∇θqθ(x)>

)
dx

= ∇2
θ,θ

∫
S
qθ(x)dx

= ∇2
θ,θ(1) = 0.

{thm:crbound}

Theorem 3.5 (Cramer-Rao Bound (1D)). Let θ̂n = θ̂n(x) be any estimator of a parameter θ based on
i.i.d. data x = {xi}ni=1 from qθ. Define the bias of θ̂n to be

bn(θ) = Eqθ [θ̂n(x)]− θ.

Note that an estimator θ̂n is nothing but a function over data x.

I) Assume the support S of qθ does not depend on θ. For simplicity, consider the 1D case when θ ∈ R.
We have

varqθ(θ̂n(x)) ≥ (1 +∇θbn(θ))2

nI(θ)
, where I(θ) := varqθ(∇θ log qθ(x)).

By the bias-variance decomposition of the mean square error (MSE), we have

E[(θ̂n − θ)2] = varqθ(θ̂n(x)) + (bn(θ))2 ≥ (1 +∇θbn(θ))2

nI(θ)
+ (bn(θ))2.

2) In particular, if θ̂n(x) is an unbiased estimator, that is, Eqθ [θ̂n(x)] = θ, then we have

Eqθ [(θ̂n(x)− θ)2] = varqθ(θ̂n(x)) ≥ 1

nI(θ)
.

Proof. Taking s(x) =
∑n

i=1∇θ log qθ(xi). We have from Lemma 3.4 that Eqθ [s(x)] = 0. For notation, we
denote by E[·] and var(·) the expectation and variance under qθ below. By Cauchy Schwarz inequality:

var(s(x))× var(θ̂n(x)) ≥ (E[s(x)(θ̂n(x)− E(θ̂n(x)))])2 = (E[s(x)θ̂n(x)])2,

where the last step is because E[s(x)] = 0. Denote by qθ(x) =
∏n
i=1 qθ(xi), and hence s(x) = ∇θ log qθ(x).

We note that

E[s(x)θ̂n(x)] = E[∇θ log qθ(x)θ̂n(x)]

=

∫
Sn
∇θqθ(x)θ̂n(x)dx

= ∇θ
∫
Sn
qθ(x)θ̂n(x)dx

= ∇θEqθ [θ̂n(x)]

= ∇(θ + bn(θ))

= 1 +∇θbn(θ),

13
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and

var(s(x)) = var(
n∑
i=1

∇θ log qθ(xi)) = nvarqθ(∇θ log qθ(x)) = nI(θ).

Therefore,

var(θ̂n) ≥ (E[s(x)θ̂n(x)])

var(s(x))
=

(1 +∇θbn(θ))2

nI(θ)
.

Problem* 3.1. Assume θ̂n is an unbiased estimator. Construct an biased estimator by θ̃n = λθn, where
λ is constant (sometimes known as shrinkage parameter). By finding a proper λ, we can trade-off bias
and variance and improve over the unbiased estimator.

1. Find the optimal λ such that the MSE E[(θ̃n − θ)2] is minimized.

2. Find the optimal λ such that lower bound of MSE in Theorem 3.5 is minimized.

The Cramer-Rao bound ensures that no unbiased estimator can achieve asymptotically lower variance
than the MLE. Stronger results, which we will not prove in this class, in fact show that no estimator,
biased or unbiased, can asymptotically achieve lower mean-squared-error than 1/(nI(θ)), except possibly
on a small set of special values θ ∈ Θ. However, rather surprisingly, one can find estimators that is
strictly better than MLE even for the estimation of mean of Gaussian distribution. See Stein paradox
https://en.wikipedia.org/wiki/Stein%27s_example.
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4 Expectation Maximization

The goal is to learn latent variable models of form

pθ(x) =

∫
pθ(x|z)pθ(z)dz,

where z is some unseen latent variable that generates x through conditional distribution pθ(x|z). We
want to estimate θ given only observing {xi}ni=1.

Nothing prevents us from applying MLE to this case, which yields an optimization of form

max
θ

{
L(θ) :=

1

n

n∑
i=1

log

∫
pθ(xi|z)pθ(z)dz

}
. (3){eq:emobj}{eq:emobj}

Unfortunately, people find it is difficult to solve this optimization directly (e.g., using gradient descent).
Expectation maximization (EM) is a specialized algorithm for optimizing objectives like (3).

Main Idea If we observe both {xi} and their related latent variables {zi}, we can simply maximize the
joint distribution on (x, z):

max
θ

n∑
i=1

log(pθ(xi|zi)pθ(zi)).

This can be much easier to solve than maximizing the marginal likelihood (3).

However, we do not observe {zi} in practice. The idea of EM is to iteratively “impute” the missing values
zi, using the posterior distribution pθold(zi|xi) from the parameter θold at the last iteration. Because θold
may be inaccurate. We can repeat this procedure as θ improves until it converges.

The procedure of EM works as follows: Starting from some initial value θ0, and perform iterative update
by

θt+1 = arg max

{
Q(θ | θt) :=

1

n

n∑
i=1

Ezi∼pθt (·|xi) [log(pθ(xi|zi)pθ(zi))]

}
, (4){equ:em}{equ:em}

where the conditional expectation denotes drawing zi from the posterior pθt(zi|xi), where θt is the param-
eter from the last step t, that is,

pθt(zi|xi) =
pθt(xi|zi)pθt(zi)

pθt(xi)
.

Problem 4.1. 1) Assume log(pθ(x|z)pθ(z)) is differentiable on θ. Prove that Q(θ | θt) satisfies the
following key properties:

i) Q(θ | θt)−Q(θt | θt) ≤ L(θ)− L(θt) ∀θ and θt

ii) ∇θQ(θ | θt) = ∇θL(θ), when θ = θt.

Q(θ | θt) is called a minorization function of L(θ) when the proprieties above holds.

2) Prove that the EM update in (4) never decreases the object L(θ), that is,

L(θt+1) ≥ L(θt), ∀t.

In addition, if θt+1 = θt, we must have ∇θL(θt) = 0, meaning that the fixed point of EM must be a
stationary point of L(θ).

15
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The general procedure of successively maximizing a minorization function is known as minorization-
maximization (MM) algorithm (it is called majorization-minimization for minimization problems). So
EM is a special case of MM. The results above show that MM provides a monotonic ascending algorithm
and converges to a stationary point of the objective function. However, note that when L(θ) is non-convex,
the stationary point could be a local optima, or even a saddle point.

Problem 4.2. Consider the mixture of linear regression:

pθ(y|x) =

m∑
i=1

wiN (y| µ>i x, σ2
i ).

where y = µix+σiξ with probability wi for i = 1, . . . ,m, with ξ denoting Gaussian noise. The parameters
of the model are θ = [wi, µi, σi], which should satisfies

∑
iwi = 1, wi ≥ 0, σi ≥ 0. Please derive the EM

update rule for learning θ.

4.1 EM as KL Minimization

We provide an alternative interpretation of EM as KL divergence minimization. This derivation makes
it natural to derive variational EM, an approximation of EM when calculating the posterior expectation
w.r.t. p(zi | xi) in (4). Note that MLE is equivalent to minimizing KL divergence:

min
θ

KL(qX || pXθ ), (5){equ:mleKL}{equ:mleKL}

where we use the superscript X to denote that they are distributions on X, to distinguish with the joint
and conditional distribution shown in the sequel. Note that qX denotes the data distribution that we
observe. Our result is based on the following chain rule of KL divergence.

Theorem 4.1 (Chain Rule of KL Divergence).

KL(qX,Z || pX,Z) = KL(qX || pX) + Ex∼qX
[
KL(qZ|x || pZ|x)

]
, (6){equ:chainKL}{equ:chainKL}

where qX,Z = qX,Z(x, z) is a joint distribution on (x, z), and qX(x) =
∫
qX,Z(x, z)dz and qZ|x(z) =

qX,Z(x,z)
qX(x)

denote the marginal and conditional distributions. Note that KL(qZ|x || pZ|x) is a function of x,

which is why an expectation on x ∼ qX is needed in the formula.

If we fix the data distribution qX , and minimize the both sides of (6) over all possible conditional
distributions qZ|X = {qZ|x : ∀x}, we have

min
qX|Z

KL(qX,Z || pX,Zθ ) = min
qZ|X

{
KL(qX || pXθ ) + Ex∼qX

[
KL(qZ|x || pZ|xθ )

]}
= KL(qX || pXθ ) + min

qZ|X

{
Ex∼qX

[
KL(qZ|x || pZ|xθ )

]}
= KL(qX || pXθ ),

where the second term is eliminated in the last step because the optimum is achieved when pZ|X = qZ|X .
Intuitively, we may view qZ|X as an imputation distribution for sampling the hidden variable Z given
observation X.
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Therefore, the optimization of θ in (5) can be re-framed into a joint optimization on θ and the imputation
distribution qZ|X :

min
θ

KL(qX || pXθ ) = min
θ

min
qZ|X

KL(qX,Z || pX,Zθ ).

In practice, we can start from some initialization and alternate between the optimization of θ and qZ|X .

Given θt, the optimal qZ|X simply equals p
Z|X
θt

:

q
Z|X
t = arg min

qZ|X
KL(qX,Z || pX,Zθt

) = p
Z|X
θt

,

Given q
Z|X
t , the update rule of θ should be

θt+1 = arg min
θ

KL(qXq
Z|X
t || pX,Zθ )

= arg max
θ

E
(x,z)∼qXqZ|Xt

[log pX,Zθ (x, z)],

which can be easily seen to be equivalent to the EM update in (4). Because the alternative minimization
of θ and qZ|X decrease the KL divergence monotonically, the monotonic property of EM is obvious from
this perspective.

Variational EM When the model is too complex and it is intractable to calculate or evaluate the

expectation of the posterior p
Z|X
θt

, EM algorithm can not be implemented directly. Variational EM is an

approximation of EM algorithm, which restricts the optimization of qZ|X to a simple parametric family,
whose optimization can be carried out numerically.

Specifically, assume qZ|X = q
Z|X
β has some simple form indexed by some parameter β (e.g., q

Z|X
β can be

a conditional Gaussian distribution). We have

min
θ

KL(qX || pXθ ) = min
θ

min
qZ|X

KL(qXqZ|X || pX,Zθ ) ≤ min
θ

min
β

KL(qXq
Z|X
β || pX,Zθ ),

where the right side is larger because the the minimization of qZ|X is restricted on a smaller set indexed
by parameter β. Here the idea is that we can not minimize the exact marginal KL divergence due to
intractability, and instead minimize the upper bound on the right side as a practical surrogate. This is of
course not ideal (and loss the theoretical guarantees we had for MLE), but it trades accuracy for faster,
practical algorithm. Alternatively update of θ and β yields the following algorithm:

With fixed θt, update of β is

βt = arg min
β

Ex∼qX
[
KL(q

Z|x
β || pZ|xθt

)
]

= arg max
β

Ex∼qX
[
E
z∼qZ|xβ

[log pX,Zθt
(x, z)− log q

Z|x
β (z|x)]

]
= arg max

β
Ex∼qX

[
E
z∼qZ|xβ

[log pX,Zθt
(x, z)] + H(q

Z|x
β )

]
,

where H(q
Z|x
β ) = −E

z∼qZ|xβ

[log q
Z|x
β (z|x)] denotes the conditional entropy.

17
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Update of θ is the same as before:

θt+1 = arg min
θ

KL(qXq
Z|X
βt
|| pX,Zθ )

= arg max
θ

Ex∼qX
[
E
z∼qZ|xβt

[log pX,Zθ (x, z)]

]
.

Variational Auto-encoder (VAE) VAE is the application of variational EM when pXθ is specified as
a deep generative models. In this case, assume x is some complex, high dimensional object (such as image
or text), which is associated with some unseen, lower dimensional latent representation z. The latent z is
assumed to be generated by pZθ , which could be something simple, such as a fixed standard Gaussian dis-

tribution N (0, 1). Given z, the conditional distribution p
X|z
θ is often specified to be conditional Gaussian

distribution:
p
X|z
θ (x|z) = N (x; µθ(z),Σθ(z)),

where ξ is standard Gaussian noise and where µθ(z) and Σθ(z) are two (likely highly complex) nonlinear
functions (such as neural networks) that specify the conditional mean and variance of x given the value
of z. When x are images, µθ is typically a convolutional neural network. The covariance matrix Σθ(z) is
often assumed to be a diagonal matrix for simplicity. The distribution of pXθ is hence

pXθ (x) =

∫
p
X|Z
θ (x|z)pZθ (z)dz =

∫
exp

(
−1

2
(x− µθ(z))>Σθ(z)

−1(x− µθ(z))−
1

2
||z||22

)
dz.

The map from z to x is called the decoder. When doing variational EM, we also need to specify q
Z|x
β ,

which can be viewed as an “encoder”. An example of qβ can be

q
Z|x
β (z|x) = N (z; µ̃β(x), σ̃2

β(x)),

where µ̃β and σ̃2
β(x) can be another two neural networks, which maps x to z.

When implementing VAE, we need to use Monte Carlo sampling to further approximate the expecatation

involved with the posterior distribution q
Z|X
β . In addition, we need to be careful how to estimate the

gradient when optimizing β. A technique, called reparametrization trick, need to be used in order to
optimize β more efficiently. These issues will be covered later in the class.

Problem 4.3. The optimization of θ and β is performed using gradient descent in practice. Write down
the gradient descent update formula of θ and β for VAE. Check the original VAE paper by Kingma and
Welling [14].
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5 Integral Probability Measures (IPM) and GANs

In MLE and KL divergence, the distributions being learned are specified by their density functions.
However, in many practical cases, distributions of interest may be singular and have no finite density
function (that is, they are not absolutely continuous w.r.t. Lebesgue measure). This happens, for example,
when all the data concentrates on a low dimensional manifold of a higher dimensional space, so that
the density function is either infinite (on the manifold), or zero (outside the manifold). MLE and KL
divergence are undefined (not just inefficient or computationally intractable). We need other tools.

Generative adversarial networks (GANs) provide a general approach for learning singular distributions
without valid density functions. The idea is to parameterize distributions by their generative mechanisms,
instead of density functions.

Specifically, let Pθ be the distribution of random variables generated by X = gθ(ξ), where ξ is a “random
seed” generated from some given, fixed distribution P0 (such as Gaussian or uniform), and gθ(ξ) is some
parametric function (e.g., a neural network) with parameter θ that converts ξ to the distribution we
want. For notation, we may write Pθ = gθ]P0, and Pθ is considered as the pushforward measure obtained
by transferring (”pushing forward”) measure P0 by function gθ(·). So the class of distributions we are
interested in is defined by

PΘ := {Pθ = gθ]P0 : θ ∈ Θ}.

The GAN Problem Assume we observe a set of data {xi}ni=1 i.i.d. drawn from an unknown distribution
P∗. We want to find that best θ, such that Pθ approximates P∗.

This is a rather natural idea. In fact, all the random variables in digital computers are generated in a
similar fashion. The randomness in computers starts from some basic random number generator pro-
grams which generates samples from certain basic distributions, typically a uniform distribution (which
is approximated by pseudo random numbers that appear random, but are actually deterministic); var-
ious transforms are then applied on the basic distribution to obtain the samples from more complex
distributions of interest.

For example, for one-dimensional R-valued distributions with cumulative probability function (CDF)
F (x), one common approach is to apply transform F−1(ξ), where ξ ∼ Uniform([0, 1]) and F−1 is the
inverse function of F . The GAN problem above can be viewed as “learning random number generators”,
where the transform function gθ is learned empirically from data.

Since KL divergence can not be used, we need alternative divergence measures that can be defined and
computed without accessing density functions. One of the most natural approach is to use integral
probability metric (IPM), which we now introduce.

5.1 Integral Probability Metrics (IPM)

Given two probability measures Q and P on a domain X , and a class of functions F defined on the same
domain. Assume F is even in that f ∈ F implies −f ∈ F . The F-based integral probability measure
(F-IPM) of P and Q is defined to be

DF (Q, P) = sup
f∈F
{|EPf − EQf |} = sup

f∈F
{EPf − EQf}, (7){equ:ipm}{equ:ipm}
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where the absolute value can be dropped because F is even. It is obvious to see that DF (Q, P) is
symmetric and satisfies the triangle inequality,

DF (Q, P) = DF (P, Q)

DF (Q1, Q2) ≤ DF (Q1, P) +DF (P, Q2).
(8){equ:semidist}{equ:semidist}

This is in contrast with KL divergence which is not symmetric and does not satisfy triangle inequality.

Functions that satisfy (8) are called semi-distances. In addition, if F is chosen properly or sufficiently
rich such that

DF (Q, P) = 0 implies Q = P,

then DF is a distance (or probability metric) on the set of distributions. A sufficient condition for
DF (Q, P) to be a distance is when the linear span of functions in F is dense in the set of bounded
continuous functions under ‖·‖∞, that is, for any bounded continuous function f∗ and any ε > 0, there
exists {ai} ⊆ R, {fi} ⊆ F and n ∈ N, such that

sup
x∈X

∣∣∣∣∣∑
i

aifi(x) + a0 − f∗(x)

∣∣∣∣∣ ≤ ε.
See Theorem 2.2 of Zhang et al. [29]. This is a fairly mild requirement. An example of functions spaces
that satisfies this conditions is

F = {σ(θ>x+ b) : [θ, b] ∈ Rd+1},

for any σ that are not polynomial, when X ⊂ Rd is compact (see Theorem 2.3 of Zhang et al. [29]). This
includes moment generating functions (when σ(t) = exp(t)), and typical neural networks with a single
neuron(!). Of course, the “discriminative power” would be larger if we have a larger set of functions.

IPM includes a large number of probability metrics as special cases, depending on the choice of F .

1-Wasserstein Distance 1-Wasserstrein distance is the case when F includes all Lipschitz functions,
that is,

DWass(Q || P) = sup
f

{
EPf − EQf s.t. ||f ||Lip ≤ 1

}
,

where the Lipschitz norm is defined to be

||f ||Lip = sup
x 6=y

f(x)− f(y)

d(x, y)
,

and d(x, y) is a notion of distance between x and y (such as the L2 or L1 distance).

Theorem 5.1. DWass(Q || P) is equivalent to the following definition motivated by optimal transport:

DWass(Q || P) = inf
γ
Eγ [d(x, y)],

where infγ is over all distributions γ on (X,Y ), such that γX = P and γY = Q. Here γX and γY denotes
the marginal distribution of γ on X and Y , respectively.
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Proof. The optimization is equivalent to

DWass(Q || P) = sup
f

{
EPf − EQf s.t. f(x)− f(y) ≤ d(x, y), ∀x, y ∈ X

}
,

Using the Lagrange multiplier, the optimization is equivalent to

DWass(Q || P) = sup
f

{
inf
γ

inf
c≥0

EPf − EQf + cEγ [d(x, y)− f(x) + f(y)]

}
= inf

γ
inf
c≥0

sup
f

{
EPf − EQf + cEγ [d(x, y)− f(x) + f(y)]

}
//assume strong duality

= inf
γ

inf
c≥0

{
cEγ [d(x, y)] + sup

f
{EPf − EQf + cEγ [−f(x) + f(y)]}

}
This is equivalent to

DWass(Q || P) = inf
γ

inf
c≥0

{
cEγ [d(x, y)] s.t. EPf − EQf + cEγ [−f(x) + f(y)] = 0, ∀f

}
,

where the constraint of EPf − EQf + cEγ [−f(x) + f(y)] = 0 for all f is equivalent to cγX = P and
cγY = Q, which implies c = 1 for normalization. Therefore, we have

DWass(Q || P) = inf
γ

{
Eγ [d(x, y)] s.t γX = P, γY = Q

}
.

This completes the proof.

Neural IPM and Wasserstein GAN In practice, it is difficult (although possible in principle) to
optimize over the set of Lipschitz functions. A more practical approach is to take F to be a parametric
family of functions, that is, F = {fβ : β ∈ B}, where Θ is a finite dimensional parameter space.

DNN (Q || P) = sup
β∈B

{
EPfβ − EQfβ

}
.

Obviously, the parametric set needs to be constructed such that the norm of fβ can not be arbitrarily
large.

We can apply DNN (Q || P) to solve the GAN problem. Denote by Qn the empirical measure of the
observation {xi}ni=1, that is, Qn(dx) :=

∑
i δ(x − xi)dx/n We find Pθ to approximate Qn by solving the

following minimax problem:

min
θ∈Θ

max
β∈B

{
EQn [fβ(x)]− EPθ [fβ(x)]

}
= min

θ∈Θ
max
β∈B

{
1

n

∑
i=1

(fβ(xi))− Eξ∼P0 [fβ (gθ(ξ))]

}

This algorithm is called Wasserstein-GAN [1]. In practice, EQn is approximated by subsampling from
the dataset, EPθ is approximated by drawing {ξi} from P0 and evaluating the empirical averaging over
xi = gθ(ξi). And θ and β are updated alternatively by performing stochastic gradient descent. In the
terminology of GAN, and gθ is known as the generator, which generates the data from the model; and
fβ is known as the discriminator, which attempts to identify the difference of the empirical and model
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distributions. The set β should be chosen properly to penalize the Lipschitz or other norm of the function
f . For example, Arjovsky et al. [1] did this by clipping the norm of β in gradient descent updates, while
Gulrajani et al. [11] introduces a penalty term of the form (||∇fβ||2 − 1)2.

More theoretical issues of W-GAN can be found in a line of recent works. See, for example, Arora et al.
[2], Zhang et al. [29] and references therein for discussions on generalization and discriminative powers of
the minimax loss function. Also, understanding the convergence of this procedure is an important but
challenging task [see e.g., 16].

6 f-Divergence

Let P and Q be two probability distributions over a space Ω such that P is absolutely continuous with
respect to Q. Then, for a convex function f such that f(1) = 0, the f -divergence of P from Q is defined
as

Df (P ‖ Q) =

∫
Ω
f

(
dP

dQ

)
dQ = EQ

[
f

(
dP

dQ

)]
.

If P and Q are both absolutely continuous with respect to a reference measure µ on Ω, then their probability
densities p and q satisfy dP = pdµ and dQ = qdµ. In this case the f -divergence can be written as

Df (P || Q) = Df (p || q) = EQ

[
f

(
p(x)

q(x)

)]
.

We may not use P and p interchangeably to represent the same distribution.

Remark: Please do not confuse the f in f -divergence with the f used in IPM. I should have used some
other notation.

Theorem 6.1. Assume f : R+ ∪ {0} → R ∪ {±∞} is a strictly convex function with f(1) = 0. If P is
absolutely continuous w.r.t. Q, then

Df (P || Q) ≥ 0,

and Df (P || Q) = 0 implies P = Q.

Proof. Because P is absolutely continuous on Q, we have Ex∼q[p(x)/q(x)] = 1 following Lemma 1.2. Using
Jensen’s inequality, we have

Df (P || Q) = EQ

[
f

(
p(x)

q(x)

)]
− f (1) = EQ

[
f

(
p(x)

q(x)

)]
− f

(
EQ

[
p(x)

q(x)

])
≥ 0.

In addition, since f is strictly convex, the inequality is tight iff p(x)/q(x) = const almost surely, which
means P = Q.

Problem* 6.1. What if P is not absolutely continuous on Q? Do we need any additional condition on f
to ensure that the non-negativity and discriminativeness of f -divergence? Do some study.
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Many common divergences, such as KL-divergence, Hellinger distance, and total variation distance, are
special cases of f -divergence, coinciding with a particular choice of f . For example, we have

Df (P || Q) =


KL(Q || P) if f(t) = − log t

KL(P || Q) if f(t) = t log t

TV(P || Q) if f(t) = |t− 1|
H(P || Q) if f(t) = (

√
t− 1)2,

where H(P || Q) denotes the Helinger distance, defined by

H(P || Q) =

∫ (√
p(x)−

√
q(x)

)2
dx.

f -divergence and IPM have very different properties. The total variation distance TV(P || Q) is the only
divergence that belong to both f -divergence and IPM. See Sriperumbudur et al. [24] for more discussion
regarding f -divergence and IPM.

Problem* 6.2. 1) Given a convex function f , find another convex function f̃ , such that Df (P || Q) =
Df̃ (Q || P).

2) Under what condition Df (P || Q) is symmetric?

6.1 Dual Representation of f-Divergence

Recall that continuous convex functions have the dual representation

f(x) = sup
t
{t>x− f∗(t)},

where f∗ is the convex conjugate function of f , which is also a convex function. If f is differentiable and
strictly convex, the optimal t is achieved when ∇f(t) = x. See Section C in Appendix for more discussion
on convex conjugate.

Using this we can rewrite f -divergence to a very useful dual representation.

Theorem 6.2. Let f be a differentiable, strictly convex function on R+. Denote by f∗ the convex
conjugate of f , we have

Df (P || Q) = sup
φ
{EP[φ(x)]− EQ[f∗(φ(x))]} . (9){equ:fdual}{equ:fdual}

where the sup is overall possible functions φ such that the objective above is finite. In addition, the
optimality is achieved when

p(x)

q(x)
= f ′(φ(x)).
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Proof. Plugging the dual representation of f into the definition of f -divergence, we have

Df (P || Q) = EQ

[
f

(
p(x)

q(x)

)]
= EQ

[
sup

φ(x) : ∀x

(
p(x)

q(x)
φ(x)− f∗(φ(x))

)]

= sup
φ(x) : ∀x

EQ

[(
p(x)

q(x)
φ(x)− f∗(φ(x))

)]

= sup
φ(x) : ∀x

{EP [φ(x)]− EQ [f∗(φ(x))]} .

Following the property of convex conjugate in Section C, the optimality is achieved when p(x)/q(x) =
f ′(t(x)).

Problem* 6.3. The dual form provides a convenient tool for proving some mathematical properties of
f -divergence that are more difficult to see thought its original definition.

1) Using the dual form to prove that Df (p || q) is a convex function of [p, q]. (hint: maximum of a set of
linear functions is convex.)

2) Let T : X → X be any map. Prove that

Df (T]P || T]Q) ≤ Df (P || Q).

Recall that T]P is the pushforward measure of P obtained through transform T .

In addition, when T : X → X is an one-to-one map, we have

Df (T]P || T]Q) = Df (P || Q).

f-Divergence as Regularized IPM It is unclear directly from (9) to see intuitively why the dual
presentation should measure the discrepancy between P and Q. This is in contrast with the IPM in (7),
which has a clear meaning as a measuring the maximum discrepancy between expectations of a class of
functions.

In addition, unlike IPM in (7), f -divergence (9) is asymmetric and the optimization of φ is over arbitrary
functions (that keep the objective function finite and defined), while IPM constraints the optimization
inside a function class F (of bounded norm in some sense) to prevent the optimization in (7) to diverge
to infinite. It is unclear what the role of f∗ is in f -divergence. To see this, let us rewrite

Df (P || Q) = sup
φ
{EP[φ(x)]− EQ[φ(x)]− Φf∗,q[φ]} , (10){equ:fdual2}{equ:fdual2}

with
Φf∗,Q[φ] = EQ[f∗(φ(x))− φ(x)],

where Φf∗,Q[φ], as we show in the next theorem, can be viewed as as a complexity regularization term
on φ that prevents the solution goes to infinite. This suggests that f -divergence can be viewed as a
regularized variant of maximum mean discrepancy; this explains why is ok to optimize φ over the set of
arbitrary functions. In contrast, IPM measures the maximum mean discrepancy while constraining the
test functions within a function class F .
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Theorem 6.3 (Lemma B.1. of Zhang et al. [29]). 1) Let f be a convex function with f(1) = 0 and f∗

the convex conjugate of f . We have
Φf∗,Q[φ] ≥ 0, ∀φ.

In addition, if f is strictly convex, we have Φf∗,Q[φ] = 0 if and only if φ(x) = c almost surely under x ∼ q
for some constant c.

Proof. 1) Since f∗(t) = sups{ts− f(s)}, we have f∗(t) ≥ ts− f(s) for any s and t. Taking s = 1, we have
f∗(t) ≥ t, which implies that Φf∗,Q[φ] ≥ 0, ∀φ.

If Φf∗,Q[φ] = 0, we have f∗(φ(x)) − φ(x) = 0 almost surely under x ∼ q. If f is strictly convex, then
f∗(t)− t is also strictly convex, which suggests that there exists only a single c such that f∗(c)− c = 0.
This suggests that φ(x) = c almost surely under q.

Problem* 6.4. Propose a condition on f (or f∗), such that Φf∗,Q[φ] is equivalent to the L2 norm
EQ[(φ(x))2], that is, there exists α ≥ β > 0, such that βEQ[(φ(x))2] ≤ Φf∗,Q[φ] ≤ αEQ[(φ(x))2].

The dual representation involves optimization overall all possible functions, which is not numerically
tractable. However, it is possible to construct the optimization to a proper function class to derive
approximation. We give two examples below.

Density Ratio Estimation [18] Assume {xi}ni=1 and {yi}mi=1 two samples drawn from two unknown
distributions P and Q, respectively. How to estimate the density ratio r(x) := p(x)/q(x), without con-
structing density approximations?

This problem can be addressed using f -divergence, by noting that the optimal solution of the optimization
in (9) solves p(x)/q(x) = f ′(φ∗(x)). Therefore, we can approximately solve the optimization, and derive
the density ratio from the optimal φ∗. The optimization can be approximated by

max
φ∈H
{EPn [φ(x)]− EQm [f∗(φ(x))]} ,

where Pn and Qm are empirical measures of the two samples, and H is a class of functions on which
numerical optimization can be performed (it is taken to be an RKHS (see Section 7) in Nguyen et al.
[18]).

f-GAN Given a collection of data {xi}ni=1, whose empirical measure is denoted by Qn, we can formulate
the learning of generative models Pθ by minimizing the dual form of f -divergence:

min
θ∈Θ

max
β∈B
{EQn [φβ(x)]− EPθ [f

∗(φβ(x))]} ,

where the optimization of φ is restricted to a parametric set {φβ : β ∈ B}, which is typically taken to
be a neural network. The objective here yields a “neural-f -divergence”, which is a lower bound of the
f -divergence.

Problem 6.1. Write down the convex function f and the corresponding dual representation of KL(Q || P)
and KL(P || Q), and the following Jensen-Shanon divergence (JSD):

JSD(P || Q) =
1

2
KL

(
P || P + Q

2

)
+

1

2
KL

(
Q || P + Q

2

)
.

Derive the original GAN by Goodfellow et al. [8] using Jensen-Shanon divergence (note that there is a
transform between the discriminator in the original GAN and the φ in our formulation).
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Problem 6.2. Prove that

KL(Q || P) = sup
φ
{EQ[φ(x)]− log(EP[exp(φ(x))])}.

This dual representation is different from the one we obtained from f -divergence. Compare these two
representations, and do some analysis on which one might be better (and for what purposes).
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7 Reproducing Kernel Hilbert Space
{sec:rkhs}

Positive Definite Kernels A two-variable function K(x, x′) : X ×X → R is said to be a kernel if it is
symmetric in x and x′, that is, K(x, x′) = K(x′, x). The kernel is said to be positive definite if the matrix
K := [K(xi, xj)]ij is positive semi-definite for any {xi} ⊆ X of finite size. A typical example of kernel is
the Gaussian RBF kernel:

K(x, x′) = exp

(
− 1

2h2

∥∥x− x′∥∥2

2

)
, (11){equ:gausskernel}{equ:gausskernel}

where h is a positive scaling factor called bandwidth. Another example is the inner product kernels:

K(x, x′) =
∑
`

φ`(x)φ`(x
′), (12){mecer}{mecer}

where {φ` : ∀`} is a set of (potentially infinitely many) functions called feature map sometimes. For
example, when we obtain polynomial kernels when {φ`} are polynomials.

In general, we may intuitively think the kernel K(x, x′) as a measure of similarity between x and x′ (even
though K(x, x′) does not have to be positive for every x, x′ ∈ X ). Mercer’s theorem guarantees that any
continuous positive definite kernel on a compact domain X can be represented as an inner product kernel
like (12), with φ` being orthogonal to each other.

Inner Product and Hilbert Space An inner product space is a linear space on which a notion of
inner product is defined. Let F be a linear space, a two-variable operator 〈·, ·〉F : F × F → R can be
called an inner product if it satisfies that following axioms, for any f, g, h ∈ F and a ∈ R,

1. Symmetric: 〈f, g〉F = 〈f, g〉F .

2. Linearity: a〈f, g〉F = 〈af, g〉F , 〈f + g, h〉F = 〈f, g〉F + 〈g, h〉F .

3. Positive-definiteness: 〈f, f〉F ≥ 0, and 〈f, f〉F = 0 iff f = 0.

The pair (F , 〈·, ·〉F ), or simply F , is called an inner product space. With the inner product, we can define
a norm by

‖f‖F =
√
〈f, f〉F ,

which then implies a distance between f and g via ||f − g||F . Therefore, an inner product space is also a
normed space. The definition of inner product and norm implies Cauchy-Schwarz inequality.

{thm:cauchy}

Theorem 7.1 (Cauchy-Schwarz Inequality). Following the definition of inner product and norm
above, we have

〈f, g〉F ≤ ‖f‖F · ‖g‖F , ∀f, g ∈ F .

In addition, the equality is achieved when f = g.

Proof. Define f0 = f/ ‖f‖F and g0 = g/ ‖g‖F . Note that

‖f0 − g0‖2F = 〈f0 − g0, f0 − g0〉F = ‖f0‖2F + ‖g0‖2F − 2〈f0, g0〉F = 1 + 1− 2
〈f, g〉F
‖f‖F · ‖g‖F

. (13)

The result then follows by ‖f0 − g0‖2F ≥ 0.
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A normed space (F , || · ||F ) is called complete if every Cauchy sequence converges to a well defined limit
that is within that space. Specifically, a sequence {fi}∞i=1 ⊂ F is called a Cauchy sequence if for every
positive real number ε > 0, there is a positive integer N such that for all positive integers m,n ≥ N , we
have ||fn − fm||F ≤ ε. We call F complete if, for every Cauchy sequence, there exists an element f∗ ∈ F ,
such that limn→∞ ||fn − f∗|| = 0.

If an inner product space is complete, then it is called a Hilbert space. Given an inner product space
one can construct an (unique) Hilbert space by adding all the limit points of all Cauchy sequence. The
Hilbert space obtained this way is called the completion of the inner product space, which is technically
the equivalent class of all the Cauchy sequence of the original space. An incomplete inner product space
is called a pre-Hilbert space, since its completion with respect to the norm induced by the inner product
is a Hilbert space. The result below shows that every inner product space can be completed to a Hilbert
space.

{thm:compeletion}

Theorem 7.2. Let (Ho, 〈·, ·〉Ho) is an inner product (or pre-Hilbert) space, then there exists an Hilbert
space (H, 〈·, ·〉Ho) and a map U · Ho → H such that

• 〈Uf,Ug〉H = 〈f, g〉Ho.

• UHo := {Uf : f ∈ Ho} is dense in H. If Ho is complete, then Ho = H.

• U : Ho → UHo is an one-to-one and linear map.

H is called the completion of Ho.

Proof (brief sketch). Construct H to be the equivalent class of all Cauchy sequences in Ho,

H = {{fi}∞i=1 : {fi}∞i=1 is a Cauchy sequence in Ho} ,

where two Cauchy sequences are viewed the same if they have the same limit. For two Cauchy sequences
{fi}∞i=1 and {gi}∞i=1, define their inner product to be limi→∞〈fi, gi〉Ho , which can be shown to exist and
satisfy the basic properties of inner product.

{def:rkhs}

Definition 7.3 (Reproducing Kernel Hilbert Space). A Hilbert space H is called a reproducing
kernel Hilbert space (RKHS), if there exists a kernel K(x, x′), such that

1. K(x, ·) ∈ H for every x ∈ X ;

2. It satisfies the reproducing property:

f(x) = 〈f(·), K(x, ·)〉H, ∀f ∈ H, x ∈ X .

K(x, x′) is called the reproducing kernel of H.

This basic definition turns out to be very powerful, and many good things can be derived from it.

Fact 1: If a kernel K(x, x′) is the reproducing kernel of some RKHS, then K(x, x′) must be
symmetric and positive definite. To see this, applying the reproducing property on K(x, ·), we have

K(x, x′) = 〈K(x, ·), K(x′, ·)〉H. (14){equ:krep}{equ:krep}
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This implies the symmetricity K(x, x′) = K(x′, x). To see the positive definiteness, note that for any
{ai} ⊂ R, {xi} ⊂ X , we have

∑
ij

aiK(xi, xj)aj = 〈
∑
i

aiK(xi, ·),
∑
i

aiK(xi, ·)〉H =

∥∥∥∥∥∑
i

aiK(xi, ·)

∥∥∥∥∥
2

H

≥ 0.

Fact 2: Every positive definite kernel K(x, x′) has an unique RKHS whose reproducing kernel
is K(x, x′). In fact, the RKHS of K(x, x′) consists of the closure of the linear span of kernel functions
{K(x, ·) : x ∈ X}, with a proper definition of inner product that satisfies the reproducing property. We
now describe the procedure of constructing RKHS from K(x, x′), and prove the uniqueness.

Definition 7.4. Define the linear span of {K(x, ·) : x ∈ X} to be

Ho := span{K(x, ·) : x ∈ X} =

{
f(·) =

n∑
i=1

aiK(·, xi) : {ai} ⊂ R, {xi} ⊂ X , n ∈ N

}
.

Ho can be equipped with an inner product defined as follows: for f(x) =
∑

i aiK(x, xi) ∈ Ho and g(x) =∑
i biK(x, xi) ∈ Ho,

〈f, g〉Ho =
∑
ij

aibjK(xi, xj). (15){h0inner}{h0inner}

This definition is unique: even when f has two different representations, e.g., f(x) =
∑

i aiK(x, xi) =∑
i a
′
iK(x, xi), the inner product only depends on f itself instead of its representations, since 〈f, g〉Ho =∑

j bjf(xj). It is easy to verify that 〈·, ·〉Ho is a valid inner product when K(x, x′) is positive definite.

Denote by Ho the completion of the inner product space Ho following Theorem 7.2. Note that Ho is a
Hilbert space consisting of all the limit points of Cauchy sequence of Ho.

Theorem 7.5 (Existence and Uniqueness of RKHS). Let K(x, x′) be a positive definite kernel. Then

i) Ho is an RKHS of kernel K(x, x′).

ii) If H is an RKHS of kernel K(x, x′), then H = Ho.

Proof (brief sketch). i) The key step of showing Ho is an RKHS is to prove the reproducing property. For
f(·) =

∑
i aiK(·, xi) ∈ Ho, and setting g(·) = K(x, ·), following the definition in (15),

〈f(·), K(x, ·)〉Ho = 〈f, g〉Ho =
∑
i

aiK(xi, x) = f(x).

The result extends to Ho by taking the limits.

ii) To show that any RKHS H equals Ho requires to show that (1) Ho consists the same set of functions,
and (2) it must have the same inner product structure.

For (1), note that we already have Ho ⊆ H following definition of RKHS. If Ho is a strict subspace of
H, then there exists an orthogonal complement Ho⊥, such that 〈f, g〉 = 0 for any f ∈ Ho⊥ and g ∈ Ho.
Since we have g(·) := K(x, ·) ∈ Ho for all x ∈ X , we have following the reproducing property:

f(x) = 〈f, K(x, ·)〉H = 0.
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This suggests that all the elements in Ho⊥ equals zero, which hence implies H = Ho.

For (2), consider f(·) =
∑

i aiK(·, xi) ∈ Ho and g(·) =
∑

i biK(·, xi) ∈ Ho. Following the reproducing
property of H, we have

〈f, g〉H =
∑
j

bj〈f,K(xj , ·)〉H =
∑
j

bjf(xj) =
∑
ij

aibjK(xi, xj),

which shows that 〈f, g〉H = 〈f, g〉Ho following the definition of 〈·, ·〉Ho in (15). Extending this to the limit
points of Ho completes the proof.

An immediate result of the existence of RKHS this is that every positive definite kernel can be decomposed
into an inner product of some feature map.

Theorem 7.6. A kernel K(x, x′) is positive definite if and only if there exists a Hilbert space H, and a
map (called the feature map) φ : X → H, such that

K(x, x′) = 〈φ(x), φ(x′)〉H. (16){equ:featuremap}{equ:featuremap}

Proof. Kernels of form (16) is obviously positive definite. On the other hand, for every positive definition
kernel, we can simply take H to its RKHS, and φ(x) = K(x, ·), and (16) follows (14).

Note that the feature map φ(x) constructed this way is “function-valued”. In machine learning, (16)
is related to what is called kernel trick, which is the idea of lifting the original feature vectors x to a
higher, possibly infinite, dimensional feature map φ(x), for which all the computation and evaluation can
be performed by only using the kernel K(x, x′) (instead of the potentially infinite dimensional feature
map φ(x)). You can learn more about kernel method from a range of textbooks and reviews, such as
Scholkopf and Smola [23].

7.1 Bounded Evaluation Functional and Riesz Representation Theorem

For any f ∈ H and x ∈ X , we can define Lx to be the evaluation operator at x:

Lxf = f(x), ∀f ∈ H, x ∈ X ,

where Lx is viewed as an operator acted on functions in H and returns the value of f at point x. It is easy
to see that Lx is a linear functional, that is, Lx(f + g) = Lxf + Lxg. The norm of a linear functional is

defined by ||Lx|| := supf∈H
|Lxf |
||f ||H . A linear functional is bounded if its norm is finite, that is, ||Lx|| <∞.

Fact 3: RKHS can be equivalently defined as Hilbert spaces on which all the evaluation
operators Lx are bounded.

Theorem 7.7 (Reproducing kernel is equivalent to bounded Lx). A Hilbert space H is a RKHS following
Definition 7.3 if and only if all its evaluation operators Lx are bounded linear functionals.
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Proof. First, if a H has reproducing kernel K(x, x′), we have

Lxf = f(x) = 〈f, K(x, ·)〉H ≤ ‖f‖H ‖K(x, ·)‖H = ‖f‖HK(x, x) <∞,

where we use ‖K(x, ·)‖2H = 〈K(x, ·),K(x, ·)〉H = K(x, x), following the reproducing property.

The other direction is more technical, and requires what is called Riesz representation theorem, which
we state without proof.

Theorem 7.8 (Riesz representation). If L is a bounded linear functional on a Hilbert space H, then there
is a unique vector gL ∈ H such that

Lf = 〈gL, f〉H for all f ∈ H.

This says that bounded linear operators on Hilbert spaces can be expressed as inner products. Applying
Riesz representation theorem to Lx, we have that there exists φx ∈ H, such that Lxf = f(x) = 〈f, φx〉H.
Define K(x, x′) = 〈φx, φx′〉H. We just need to show that K(x, x′) is the reproducing kernel of H. To see
it, first note that

φx(x′) = Lx′φx = 〈φx, φx′〉H = K(x, x′).

In other words, φx(·) = K(x, x′). Therefore, for any f ∈ H,

f(x) = 〈f, φx〉H = 〈f, K(x, ·)〉H.

This shows H is the RKHS with reproducing kernel K(x, x′).

Problem 7.1. 1) Prove that the RKHS of the Gaussian RBF kernel in (11) on domain X = Rd does not
include any linear function f(x) = a>x+ b, except f(x) = 0.

2) Construct a new kernel so that its RKHS includes the union of all linear functions and all the functions
in the RKHS of the Gaussian RBF kernel.

Problem* 7.1. For differentiable functions on (0, 1), we may define the following inner product

〈f, g〉H =

∫ 1

0
f ′(x)g′(x)dx,

where f ′ denotes the derivative of f . Let H be the Hilbert space with this inner product, consisting of
the closure of infinite differentiable functions supported in compact subsets of (0, 1). Prove that H is an
RKHS with kernel k(x, y) = min(x, y). Use this fact to solve the following optimization for non-linear
regression:

min
f

∑
i

(f(xi)− yi)2 + λ

∫ 1

0
(f ′(x))2dx.

(hint: Denote by k′x(x, y) = I(x ≤ y) the derivative of k w.r.t. x). To prove the reproducing property, we
note that

f(y) =

∫
f ′(x)k′x(x, y)dx =

∫ y

0
f ′(x)dx = f(y).

)
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7.2 Random Features

Random features provide a powerful tool for approximating kernels in big data settings. It also provides
an alternative interpretation of RKHS that is very useful for both scalable kernel learning and theoretical
understanding.

In many case, we can decompose the kernel into the following form

K(x, x′) =

∫
W
φ(x,w)φ(x′, w)dµ(w), (17){equ:Kphiw}{equ:Kphiw}

where µ is a measure on some domainW, and φ(·, ·) is a measurable function of x and w. In cases when µ
is a probability measure, (17) is viewed as a random feature expansion of K(x, x′), because we can draw
{wi}mi=1 i.i.d. from µ and approximate K(x, x′) by

K̂m(x, x′) =
1

m

m∑
i=1

φ(x,wi)φ(x′, wi).

This approach is widely used in large scale kernel learning. A major class of random features are Fourier
features (see Rahimi and Recht [20]).

Theorem 7.9 (Bochner [21]). A kernel is called stationary if it has a form of K(x, y) = K(x− y), for a
one-variable function K(·). A continuous stationary kernel on Rd is positive definite if and only if K(·)
is the Fourier transform of a non-negative measure.

Using this result, we can decompose continuous stationary kernels into expectations of cosine random
features,

φ(x,w) =
√

2 cos(w>1 x+ w0), w = [w1, w0].

We obtain different kernels by taking different distribution µ on [w1, w0]. For example, Gaussian RBF
kernel with unit bandwidth K(x, x′) = exp(−||x − x′||22/2) can be obtained by w1 ∼ N (0, 1) and w0 ∼
([0, 1]). See Figure 1 of Rahimi and Recht [20].

We need some basic definition before explaining the relation between RKHS and random features.

Definition 7.10 (L2(µ) Space). Given a measure µ on domain X , the L2(X , µ) space is defined to be
the set of square integral functional under measure µ:

L2(X , µ) =

{
f : f is measurable and ‖f‖2L2(X ,µ) :=

∫
f(x)2dµ(x) <∞

}
, (18)

where ‖f‖L2(X ,µ) is called the L2(X , µ) norm of f , so L2(X , µ) is the space of functions with finite
L2(X , µ) norm. We simply write L2(µ) or L2,µ when it is obvious what domain it is defined on, and
L2(X ) or L2 when µ is the Lebesgue measure.

L2(µ) can be turned into a Hilbert space with the following definition of inner product

〈f, g〉L2(µ) =

∫
f(x)g(x)dµ(x).

Note that f and g are viewed as identical in L2(µ) if f = g almost surely under µ, that is, µ({x ∈
X : f(x) 6= g(x)}) = 0.
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{thm:featurerkhs}

Theorem 7.11. For positive definite kernel K(x, x′) of form (17), its RKHS consists functions of form

H =

{
f(x) =

∫
φ(x,w)%f (w)µ(dw), ∀%f ∈ L2(µ), ‖%f‖L2(µ) <∞

}
.

For simplicity, assume {φ(·, w) : w ∈ W} is linearly independent, that is,
∫
φ(·, w)ρf (w)dµ(w) = 0 implies

‖%f‖L2(µ) = 0, so that the map from %f to f is one-to-one. Then the inner product and norm on H can

be represented by that in L2(µ):

〈f, g〉H = 〈%f , %g〉L2(µ), ‖f‖H = ‖%f‖L2(µ) . (19){equ:fh}{equ:fh}

where f =
∫
φ(x,w)%f (w)µ(dw) and g =

∫
φ(x,w)%g(w)µ(dw). Note that this establishes an ismorphism

between L2(µ) and H. TODO

Proof (sketch). Obviously, H defined in this way is a Hilbert space. We just show that K(x, x′) is a
reproducing kernel of H defined in this way. To see it, note that

f(x) =

∫
φ(x,w)%f (w)µ(dw) = 〈φ(x, ·), %f (·)〉L2(µ) = 〈K(x, ·), f(·)〉H,

where the last step follows the definition of 〈·, ·〉H in (19) and the feature expansion of kernel in (17).
{prob:nn1}

Problem* 7.2. Consider one-layer neural networks of form

f(x; w) =
∑
i

σ(w>i x),

where σ is the activation function (such as ReLU σ(t) = max(0, t)) and wi is the weight vector of the
i-th neuron. Assume we have continuously infinite numbers of neurons, whose weights follow a measure
ρ. Such networks can be represented

f(x; ρ) =

∫
σ(w>x)ρ(dw)

Does the set of neural networks {f(x; ρ) : ∀ρ} form an RKHS? If not, could you construct a RKHS which
includes (a reasonably large) subset of such infinite neural networks? Read Bach [3].

7.3 Nonparametric Learning and Finite Representer Theorem

RKHS can be used as the model class for nonparametric learning and estimation. We consider the
nonparameteric regression problem as illustrative examples. Given observation {xi, yi)}ni=1, and we want
to find a function f , such that f(xi) ≈ yi. Instead of assuming f to form certain parametric form like
typical parametric regression approaches, we assume f is an element of an RKHS, yielding the following
infinite dimensional optimization problem.

min
f∈H

n∑
i=1

(f(xi)− yi)2 + λ ‖f‖2H , (20){equ:kernelregress}{equ:kernelregress}
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where we search for the best f within RKHS H to minimize the mean square loss function, with a penalty
term that enforces the RKHS norm to be small, which controls the complexity of f .

The remarkable fact is that this optimization, despite being infinite dimensional, can be solved numerically
with a very simple form. This is thanks to the finite representer theorem [13, 22], which suggests
that the optimal solution of (20) has to in the linear span of kernels K(x, xi) evaluated on the data points
{xi}, that is,

f(x) =

n∑
i=1

aiK(x, xi),

where {ai} is a set of parameters to be decided. Therefore, we just need to search the optimal {ai}, which
can be done by plugging this presentation into the original optimization:

min
{ai}

n∑
i=1

(
n∑
j=1

ajK(xi, xj)− yi)2 + λ
n∑

ij=1

aiK(xi, xj)aj .

This can be rewritten into a matrix form

min
a
‖Ka− y‖22 + λa>Ka,

where a = [ai]
n
i=1, K = [K(xi, xj)]ij , y = [yi]

n
i=1. The optimal solution is

â = (K + λI)−1y,

where I is the identity matrix of the same size as K.

Let us now formally introduce a version of finite representer theorem. The key idea is to decompose f
into the sum of functions in span(K(·, xi) : i = 1, . . . n) and its orthogonal complementary, and show that
the orthogonal complementary can not contribute to decrease the data-related loss, and hence should be
set to be zero due to the RKHS norm penalty.

Theorem 7.12. Consider the optimization of the following form:

min
f∈H

{
L(f(x1), . . . , f(xn)) + Φ(‖f‖H)

}
,

which depends on f only through its evaluate f(xi) at a finite number of points {xi}ni=1 (through an
arbitary function L(· · · )), and its RKHS norm ‖f‖H. Assume Φ is a strictly increasing function so that
functions with smaller norm is favored. Then the optimal solution must have a form of

f(x) =
n∑
i=1

aiK(x, xi),

for some coefficient {ai}ni=1 ∈ Rn.

Proof. Note that any f in H can be decomposed into

f(x) =
∑
i

aiK(x, xi) + f⊥(x),

where f⊥ is a function in the orthogonal complement of the subspace spanned by {K(·, xi) : i = 1, . . . , n}.
We just need to show that f⊥ = 0 at the optimal point.
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We start with observing that we must have f⊥(xi) = 0 for i = 1, . . . , n. This is because of the reproducing
property:

f⊥(xi) = 〈f⊥, K(·, xi)〉H = 0,

which equals 0 because f⊥ is orthogonal to all K(·, xi) by assumption.

Therefore, different choices of f⊥ does not influence the data term L(f(x1), . . . , f(xn)); for the RKHS
norm penalty, note that

‖f‖2H = ||
n∑
i=1

aiK(x, xi)||2H + ‖f⊥(x)‖2H ,

which is minimized when f⊥ = 0. Therefore, we must have f⊥ = 0 at the optimality, which suggests that
the optimal solution should have the form of f(x) =

∑n
i=1 aiK(x, xi).

Since the loss function L is arbitrary, its application is not restricted to simple mean square loss. Consider
the case of kernel classification: Given data {xi, yi}ni=1, where we have binary labels yi = {0, 1}, which
is assumed to be generated by

p(y|x; f) =
exp(yf(x))

1 + exp(yf(x))
.

Maximum likelihood estimation of f within RKHS yields

max
f∈H

∑
i=1

log p(yi|xi; f) + λ ‖f‖2H ,

which again has a solution of form f(xi) =
∑

i aiK(x, xi). Unlike the case of regression, the optimal {ai}
in this case should be defined to numerical algorithms, such as gradient descent.

Computation Complexity of kernel regression is O(n3), which is slow when the data size n is very
large (a.k.a. big data). Developing fast kernel methods for big data settings is a well studied topic in
machine learning and various other areas. Typical ideas includes finding a small set “anchor points” to
obtain more compact representations, using random feature approximation, etc. See Scholkopf and Smola
[23].

The choice of kernels is another important decision that we need to face when using kernel methods.
A default choice is obviously the Gaussian RBF kernel K(x, x′) = exp(−‖x− x′‖22 /h2), whose bandwidth
can be chosen using the so called “median trick”, which amounts to take h to be proportional to the
median of the pairwise distance of the dataset, that is, h = c ×med({‖xi − xj‖ : i 6= j}), and c is some
scaling constant that can be adjusted. This allows the bandwidth to adapt with the dataset.

Gaussian RBF kernel does not work well for complex, high dimensional data. People have investigated
specialized kernels for structured objects such as strings, graphs, even distributions, etc. People also
studied leveraging deep neural networks to design kernels that leverage the power of deep learning.

7.4 Generalization and Rademacher Complexity

RKHS appears to include “a lot” of functions. Should we worry about overfitting. It turns out this is
not a problem. The set of RKHS functions is actually “very small”, in that its Rademacher complexity
is only O(1/

√
n), the same rate as typical parametric classes.
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Theorem 7.13. Consider the Rademacher complexity of the unit ball B = {f ∈ H : ‖f‖H ≤ 1} of
RKHS H of kernel K(x, x′):

R̂Xn(B) = Eσ[sup
f∈H

n∑
i=1

σif(xi)]

7.5 Maximum Mean Discrepancy

As another major application, RKHS is widely used as the discriminator set in IPM, which again, yields
a simple closed form. Define

DH(P, Q) = max
f∈H
{EP[f ]− EQ[f ] : ‖f‖H ≤ 1} , (21){equ:mmdf}{equ:mmdf}

where DH(P, Q) is often known as (kernel) maximum mean discrepancy (MMD) [9].

Theorem 7.14. Let H be the RKHS of kernel K(x, x′). For MMD defined in (21), we have

DH(P, Q) =
√

E[K(X,X ′) +K(Y, Y ′)− 2K(X,Y )],

where (X,X ′) and (Y, Y ′) are i.i.d. random variables drawn from P and Q, respectively. The optimal f
that solves (21) is

f∗(·) =
1

DH(P, Q)
E[K(X, ·)−K(Y, ·)].

Proof (using reproducing property). Recall a basic fact of Hilbert space following Cauchy-Schwarz inequal-
ity: the solution of

max
f∈H
〈f, g〉H, s.t. ‖f‖H ≤ 1

equals f∗ = g/ ‖g‖H, and the optimal value is 〈f∗, g〉H = ‖g‖H.

For our problem, using the reproducing property, we have

E[f(X)− f(Y )] = E[〈f, K(X, ·)−K(Y, ·)〉H]

= 〈f, E[K(X, ·)−K(Y, ·)]〉H.

Taking g(·) = E[K(X, ·)−K(Y, ·)], we get

DH(P, Q) = sup
‖f‖H≤1

{E[f(X)− f(Y )]} = sup
‖f‖H≤1

{〈f, g〉H} = ‖g‖H .

So we just need to calculate the RKHS norm.

‖g‖2H = ‖E[K(X, ·)−K(Y, ·)]‖2H
=
〈
E[K(X, ·)−K(Y, ·)], E[K(X ′, ·)−K(Y ′, ·)]

〉
H

= E
[〈
K(X, ·)−K(Y, ·), K(X ′, ·)−K(Y ′, ·)

〉
H
]

= E
[
〈K(X, ·),K(X ′, ·)〉H + 〈K(Y, ·),K(Y ′, ·)〉H − 〈K(X, ·),K(Y ′, ·)〉H − 〈K(Y, ·),K(X ′, ·)〉H

]
= E

[
K(X,X ′) +K(Y, Y ′)−K(X,Y ′)−K(X ′, Y )

]
= E

[
K(X,X ′) +K(Y, Y ′)− 2K(X,Y )

]
.

The form of optimal f∗ = g/ ‖g‖H can be found accordingly.
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Proof (using random features). Assume K(x, x′) =
∫
φ(x,w)φ(x′, w)µ(dx) for some function φ : X×W →

R and a measure µ on W. Following Theorem 7.11, every f ∈ H can be represented by f(x) =∫
φ(x,w)%f (w)µ(dw) with some %f ∈ L2(W, µ) := L2(µ). Therefore,

EPf − EQf =

∫
g(w)%f (w)µ(dw),

where g is defined by
g(w) := E[φ(X,w)]− E[φ(Y,w)],

with X ∼ P and Y ∼ Q. Therefore,

DH(P, Q) = sup
%∈L2(µ)

{∫
g(w)%(w)µ(dw) s.t. ‖%‖L2(µ) ≤ 1

}
= ‖g‖L2(µ) .

We just need to calculate the L2(µ) norm of g:

‖g‖2L2(µ) =

∫
(E[φ(X,w)]− E[φ(Y,w)])2µ(dw)

=

∫
(E[φ(X,w)]− E[φ(Y,w)])(E[φ(X ′, w)]− E[φ(Y ′, w)])2µ(dw)

= E
[∫

(φ(X,w)− φ(Y,w))(φ(X ′, w)− φ(Y ′, w))2µ(dw)

]
= E

[
K(X,X ′) +K(Y, Y ′)−K(X,Y ′)−K(X ′, Y )

]
= E

[
K(X,X ′) +K(Y, Y ′)− 2K(X,Y )

]
.

Problem* 7.3. Consider the infinite neural network in Problem 7.2:

f(x; ρ) =

∫
σ(w>x)ρ(dw) = Eρ[σ(w>x)],

where we assume ρ is a probability measure. Consider learning the optimal ρ (in the space of all distribu-
tions), by minimizing the measure square loss:

min
ρ
L(ρ) := E[(f(x; ρ)− y)2].

Assume x is drawn from some distribution µ, and y = f(x; ρ∗) + σξ, where ρ∗ is the unknown true
parameter, ξ is an independent standard Gaussian noise and σ is a variance parameter. Prove that

L[ρ] = DH(ρ, ρ∗)2 + σ2.

where DH(ρ, ρ∗) denotes the MMD under RKHS H, whose kernel is

K(w,w′) = Ex∼µ[σ(w>x)σ(w′>x)].

Note that the kernel is defined on the weights (w,w′), instead of x.
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7.6 Empirical Estimation of MMD: U-Statistics and V-Statistics

7.7 Energy Distance

7.8 Applications

Two sample tests

Density ratio estimation, domain adaptation, transfer learning.

MMD-GAN, herding.
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8 Bayesian Inference

Given an observation x, which assumed to be drawn from a model p(x | θ), where θ is an unknown
parameter. Bayesian inference provides a general approach for estimating the unknown θ, as well as
quantifying its uncertainty. In Bayesian methods, we assign a prior π(θ) on θ, and calculate the posterior
distribution of θ given the observation x:

p(θ | x) =
p(x|θ)π(θ)

p(x)
∝ p(x|θ)π(θ),

where p(θ) is the marginal distribution of the data, which serves a normalization constant for the posterior
distribution of θ.

p(θ) =

∫
p(x|θ)π(θ)dθ.

When the observation is D = {xi}ni=1 i.i.d. drawn from p(x|θ), we have

p(θ | D) ∝

[
n∏
i=1

p(x|θ)

]
π(θ).

We can see that the importance of prior π diminishes as the number of data points n increases.

The idea is that the posterior distribution p(θ | x) summarizes all the information regarding θ given
observation x, and all the queries regarding θ can be answered from it. For example, we may estimate
φ(θ) for any function φ by the posterior expectation:

E[φ(θ) | x].

We may also construct interval estimates from the posterior distribution. For example, let ψα be the
α-quantile of p(θ|x), then [ψα/2, ψ1−α/2] can be used a α-credible interval of θ. We should distinguish
credible intervals with confidence intervals in frequentist statistics.

We should compare Bayesian methods with frequentist methods: Bayesian methods the estimated pa-
rameter θ as a random variable and the observation x as fixed, , whereas frequentist methods treat the
data x as random variables and the parameter as a (unknown) fixed value.

Check this interesting blog post, and also this lecture note.

8.1 Bayesian Estimators and Admissibility

Given a distribution family p(x | θ), θ ∈ Θ. An estimator (or decision rule) is any measurable function
δ : X → Θ. The estimator can be deterministic, or random (in which case δ is a distribution conditioning
on x). Assume we are interested in constructing an estimator δ(x) to minimize certain loss function:
L(δ(x), θ). The expected loss function is

R(θ, δ) =

∫
p(x|θ)L(δ(x), θ)dx = Ex∼p(·|θ)[L(δ(x), θ)].

Note that the expected loss depends R(θ, δ) on the (unknown) parameter θ; two different estimators δ1

and δ2 may perform better than the other on different θ. Therefore, the problem of finding the best
estimator is a fundamentally a multi-objective optimization problem. This fact that the expected

39
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loss depends on the unknown θ is one of the main sophistication of statistical estimation theory. Bayesian
estimators can be viewed as resolving this issue using a simple weighed-sum approach, which minimizes
a weighted sum of loss of different θ, with each preference weight of θ coinciding with its prior π(θ).

We call an estimator δ1 is as good as estimator δ2, if we have R(θ, δ1) ≤ R(θ, δ2) for all θ ∈ Θ. We call
δ1 dominates δ2 if δ1 is as good as δ2, and there exists at least some θ ∈ Θ, such that R(θ, δ1) < R(θ, δ2).
An estimator δ is called admissible if it is not dominated by any other estimator. This is the same as
the Pareto optimality or Pareto efficiency in multi-objective optimization.

An estimator δ∗ is called a Bayesian estimator, if there exists a prior π (which is a measure on Θ),
such that

δ∗ = arg min
δ

Eθ∼π[R(θ, δ)].

Under mild conditions, we can show that Bayesian estimators with positive priors are admissible;
and all admissible estimators are Bayesian estimators with some prior, a result known as
complete class theorem in the literature.

An alternative approach is to consider the minimax estimators, defined

δ∗ = arg min
θ

{
sup
θ∈Θ

R(θ, δ)
}
.

Unlike Bayesian estimators which can be automatically derived from Bayesian rules. It is much more
difficult to construct minimax estimators (which can only done in a case by case fashion). In addition,
being an minimax estimator does not guarantee admissibility.

Let us now discuss the admissibility of Bayesian estimators. It is illustrative to first consider the special
case when the space of parameters Θ has finite number of elements.

Theorem 8.1 (Bayesian estimators with positive priors are admissible). Assume Θ = {θ1, . . . , θK}
is a finite set, and the prior π is positive on all the elements of Θ, then Bayesian estimator with prior π
is admissible.

Proof. If δ2 dominates δ, we have R(θ, δ2) ≤ R(θ, δ) for all θ and R(θ, δ2) < R(θ, δ) for some θ. Because
the prior π is strictly positive on all θ, we must have Eθ∼π[R(θ, δ2)] < Eθ∼π[R(θ, δ)]. This contradicts with
the assumption that δ is the Bayesian estimator with prior π.

Theorem 8.2. Consider the case when Θ ⊆ Rd. Define the support of a prior π to be the set of points
θ such that π({θ′ : ‖θ′ − θ‖ ≤ ε}) > 0 for any ε > 0. Assume the support of π is Θ (that is, π is strictly
positive on Θ), and R(θ, δ) is continuous on θ for any δ. Then the Bayesian estimator of π is admissible.

Proof. If there exists an δ′ that dominates δ, we have R(θ, δ)−R(θ, δ′) ≥ 0 for all θ ∈ Θ, and can find a
θ∗ such that δθ∗ := R(θ∗, δ)−R(θ∗, δ

′) > 0. Due to the continuous of R(θ, δ)−R(θ, δ′) on θ, we can find
ε > 0, such that R(θ, δ)−R(θ, δ′) > 1

2δθ∗ for all θ′ ∈ Bθ∗(ε) := {θ′ ∈ Θ: ‖θ′ − θ∗‖ ≤ ε}. This gives

Eθ∼π[R(θ, δ)]− Eθ∼π[R(θ, δ′)] ≥
∫
Bθ∗ (ε)

(R(θ, δ)−R(θ, δ′))π(dθ)

≥ 1

2
δθ∗ × π(Bθ∗(ε)) > 0.

But this contradicts with the assumption that δ is the Bayesian estimator with prior π.
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Problem* 8.1 (Unique Bayesian estimators are admissible). If an estimator δ is the unique
minimizer of Eθ∼π[R(θ, δ)] for some prior π, then δ is admissible.

Theorem 8.3 (Admissible Estimators are Bayesian Estimators). Consider the case when Θ =
{θ1, . . . , θK} is finite. For any admissible estimator δ, there exists a prior π, such that δ is the Bayesian
estimator with prior π.

Proof. Visualize the risk body. TODO: plot a figure.

Problem* 8.2 (James-Stein Estimator). Assume X ∼ N (θ, σ2I) where θ ∈ Rd is an unknown mean
parameter and the variance σ2 is assumed to be known. Recall that the maximum likelihood estimator
(given an observation of X) is δ0(x) = x in this case.

Let us consider instead a more general Shrinkage estimator:

δa(x) = x− a x

‖x‖22
,

where a is a non-negative coefficient, which controls how much we want to shrink the estimation towards
zero. We want to investigate the problem of choosing the optimal a to achieve the optimal mean square
error:

MSE(δa) = EX∼pθ [(θ − δ(X))2],

where pθ = N (θ, σ2I). Prove that

1) When d = 1 or 2, the optimal a equals zero (a∗ = 0), that is, no shrinkage should be applied.

2) When d ≥ 3, the optimal shrinkage coefficient is a∗ = σ2(d − 2), and MSE(δa∗) is strictly smaller
than MSE(δ0). This suggests that the maximum likelihood estimator δ0(x) = x is NOT an admissible
estimator in this case. The estimator is known as James-Stein estimator in this case:

θ̂JS = x− σ2(d− 2)
x

‖x‖22
.

Proof. Taking g(x) = −a x
‖x‖22

in theorem 8.4, we have

∂xig(x) = −a 1

‖x‖22
+ a

2x2
i

‖x‖42
.

This gives

∇ · g(x) = −ad− 2

‖x‖22
.

Therefore,

MSE(δa) = dσ2 +
(
a2 − 2aσ2(d− 2)

)
E[‖x‖−2

2 ].

When d ≤ 2, we can see that MSE(δa) ≥ dσ2 = MSE(δ0).

When d > 2, this minimum is achieved when a = σ2(d− 2), in which case we have

MSE(δa) = dσ2 − σ4(d− 2)2E[‖x‖−2
2 ] < dσ2 = MSE(δ0).
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{thm:sure}

Theorem 8.4 (Stein’s unbiased risk estimate (SURE)). Let µ ∈ Rd be an unknown parameter and let
x ∈ Rd be a measurement vector whose components are independent and distributed normally with mean
µ and variance σ2. Suppose δ(x) is an estimator of µ from x, and can be written δ(x) = x+ g(x), where
g(x) = [g1(x), . . . , gd(x)]> ∈ Rd is (weakly) differentiable. Then,

MSE(δ) = d× σ2 + E[‖g(X)‖22 + 2σ2∇ · g(X)],

where X ∼ N (µ, σ2I), and ∇ · g(x) =
∑d

i=1 ∂xigi(x) and ‖g(x)‖22 =
∑d

i=1 gi(x)2.

Proof.

MSE(δ) = E[‖δ(X)− µ‖22]

= E[‖X + g(X)− µ‖2]

= E[‖X − µ‖2 + ‖g(X)‖22 + 2g(X)(X − µ)]

= dσ2 + E[‖g(X)‖22] + 2σ2E[g(X)(X − µ)].

The result then follows Stein’s identity E[g(X)(X − µ)] = σ2E[∇ · g(X)], for X ∼ N (µ, σ2I).

Problem 8.1. Please point out any typo and error you find in the note (use the page and line numbers
to locate the places).

Theorem 8.5 (Stein’s Identity). Assume p(x) is a differentiable density function, we have

Ex∼p[f(x)∇x log p(x) +∇f(x)] = 0.

Proof. Let Br = {x ∈ Rd : ‖x‖2 ≤ r} be the Euclidean ball with radius r. Assume p(x)f(x) is continuosly
differentiable. By Stokes theorem,∫

∂Br

p(x)f(x)dx =

∫
Br

∇ · (p(x)f(x))dx

∫
BR

∇p(x)f(x)

Theorem 8.6 (Stein’s Identity for Normal Distributions). Let X ∼ N (µ,Σ) be a Rd Gaussian random
variable, and f : Rd → R is continuously continuous. We have

E[Xf(X) + f ′(X)] = 0.

Proof. Note that f(x) =
∫ x
−∞ f

′(t)dt, we have

E[

∫
XI(Y ≤ X)f ′(Y )dY ] =

∫
E[XI(Y ≤ X)f ′(Y )] =
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8.2 PAC Bayesian Bounds

Recall the standard setting of empirical risk minimization:

min
θ
LS(θ) :=

1

n

n∑
i=1

`(xi, θ),

where S := {xi}ni=1 is an i.i.d. sample from data distribution D. Denote by LD(θ) = EX∼D[`(X, θ)] the
expected loss. The standard generalization bound, based on Rademacher complexity is: with probability
at least 1− δ,

sup
θ∈Θ

{
LD(θ)− LS(θ)

}
≤ 2ES∼Dn [R(FΘ, S)] + 2c

√
log(2/δ)

n
,

where FΘ = {f(x) = `(x, θ), θ ∈ Θ}, and R(FΘ, S) is its Rademacher complexity, and c = supx,θ |`(x, θ)|.

PAC-Bayesian bounds are different types of generalization that works for randomized estimators. In this
case, a randomized estimator is a distribution ρ(·|S) of θ, given data S. whose training and testing loss is
Eθ∼ρ[LS(θ)] and Eθ∼ρ[LD(θ)], respectively. PAC-Bayesian inequalities provides a uniform bound between
the difference between training and testing losses, which, surprisingly, does not depend on the complexity
of the hypothesis class!

{thm:pacBayes}

Theorem 8.7. Assume `(x, θ) is λ-Sub-Gaussian, uniformly in θ, in that

Ex∼D [exp (`(x, θ)− Ex∼D[`(x, θ)])] ≤ exp

(
λx2

2

)
, ∀θ ∈ Θ.

This is achieved, for example, when `(x, θ) is bounded supx,θ |`(x, θ)| ≤ λ. should not it be λ = σ2?

Let π be prior distribution on θ, We have with probability at least 1− δ, we have the following bound holds
uniformly for all distributions ρ that are absolutely continuous w.r.t. π (so that KL(ρ || π) <∞),

Eρ[LD(θ)] ≤ Eρ[LS(θ)] +

√
2λ(KL(ρ || π) + log(1/δ))

n
, ∀ρ.

The proof of this result relies on a key variational representation of KL divergence.
{lem:KLvar}

Lemma 8.8. Assume ρ is absolutely continuous w.r.t. π, we have

KL(ρ || π) = sup
f

{
Ex∼ρ[f(x)]− logEx∼π[exp(f(x))]

}
.

Proof. Define the following f -tilted density function:

πf (x) =
π(x)f(x)

E[exp(f(x))]
.

We have

KL(ρ || πf ) = Ex∼ρ[log ρ(x)− log π(x)− f(x) + logE[exp(f(x))]]

= KL(ρ || π)− (Ex∼ρ[f(x)]− logE[exp(f(x))]) .

Because KL(ρ || πf ) ≥ 0, we have

KL(ρ || π) ≥ (Ex∼ρ[f(x)]− logE[exp(f(x))]) .

In addition, the inequality is tight when f(x) = ρ(x)/π(x), so that πf = ρ and hence KL(ρ || πf ) = 0.
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Proof of Theorem 8.7. Define ∆(θ) := ∆(θ; S) = LD(θ)− LS(θ). Applying Lemma 8.8, we have

Eθ∼ρ[α∆(θ)] ≤ KL(ρ || π) + logEθ∼π[exp(α∆(θ))],

and hence

Eθ∼ρ[∆(θ)] ≤ 1

α
KL(ρ || π) +

1

α
logEθ∼π[exp(α∆(θ))],

where α is a positive number that we will decide later. We just need to show that the second term
1
α logEθ∼π[exp(α∆(θ))] is small. This is true because ∆(θ) = LD(θ) − LS(θ) is the difference of the
empirical and expected loss and should decay with the sample size. We can bound exp(α∆(θ)) using
Markov inequality.

Recall Markov inequality:

Pr

(
Z ≥ E[Z]

δ

)
≤ δ.

Define Z := Eθ∼π[exp(α∆(θ; S))], which is a random variable due to the randomness in the data S.
Applying Markov inequality on Z, we have with probability at least 1− δ

Eθ∼π[exp(α∆(θ))] ≥ ES∼Dn [Eθ∼π[exp(α∆(θ))]]

δ
.

We have, with probability 1− δ,

Eρ[∆(θ)] ≤ 1

α
KL(ρ || π) +

1

α
log

(
ES∼Dn [Eθ∼π[exp(α∆(θ))]]

δ

)
, ∀ρ.

Note that this bound holds true for all ρ uniformly! This is because the term we apply Markov inequality
does not depend on ρ (but depends on the fixed “prior” π).

For notation, define ¯̀(x, θ) = Ex∼D[`(x, θ)]− `(x, θ). We have for any θ,

ES∼Dn [exp(∆(θ; S))] = ES∼Dn
[

exp

(
α

n

n∑
i=1

¯̀(xi, θ)

)]
=
(
Ex∼D

[
exp

(α
n

¯̀(x, θ)
)])n

≤
(

exp

(
λ

2

(α
n

)2
))n

// Applying Sub-Gaussianity

= exp(λα2/(2n))

Therefore, we have logEθ∼π[ES∼Dn [exp(α∆(θ; S))]] ≤ λα2/(2n). Hence, w.r.t. 1− δ

Eρ[∆(θ)] ≤ 1

α
KL(ρ || p) +

λα

2n
+

1

α
log(1/δ). (22){equ:alphaKLbayes}{equ:alphaKLbayes}

Taking the optimal α:

Eρ[∆(θ)] ≤ inf
α≥0

1

α
(KL(ρ || p) + log(1/δ)) +

λα

2n
=

√
2λ

n
(KL(ρ || p) + log(1/δ)).
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Corollary 8.9. Under the condition of Theorem 8.7, for any δ ∈ (0, 1) and β > 0, we have with probability
at least 1− δ,

Eρ[LD(θ)] ≤ Eρ[LS(θ)] +
β√
n

(
KL(ρ || π) + log(1/δ) +

λ

2β2

)
, ∀ρ.

Proof. If we take α =
√
n/β in (22) for any β > 0, we have

Eρ[∆(θ)] ≤ β√
n

KL(ρ || p) +
λ

2β
√
n

+
β√
n

log(1/δ).

There is a been a throughout literature on PAC-Bayesian bounds and its application. The results above
can be found ??. See Guedj [10] for a good recent overview.

α-Divergence α-divergence is a special class of f -divergence,

Dα(ρ || π) =
1

α(α− 1)
(

∫
ρ(x)απ(x)1−αdx− 1),

where α is a number in R{0, 1}, we obtain Helinger divergence when α = 1/2, and χ2-divergence when
α = 2 or −1. In addition, α-divergence includes KL divergence as limit when α approaches to 0, or 1:

lim
α→1

Dα(ρ || π) = KL(ρ || π), lim
α→0

Dα(ρ || π) = KL(π || ρ).

We can derive a variational form of α-divergence similar to that of (8.8) using Holder’s inequality, and
hence derive a generalization of PAC-Bayesian bound based on α-divergence.

Lemma 8.10. For any pair of positive numbers α and β in (1,+∞) that satisfies 1/α+ 1/β = 1,

Eρ[∆(θ)] =

∫
ρ(θ)∆(θ)dθ =

∫
π(θ)

ρ(θ)

π(θ)
∆(θ)dθ ≤

(∫
π(θ)∆(θ)β

)1/β (∫ ρ(θ)

π(θ)

α

π(θ)dθ

)1/α

.

This is rewrite to
Eρ[∆(θ)] ≤ ||∆||β,π × Iα(ρ || π),

where Iα(ρ || π) =
(∫
ρ(x)απ(x)1−αdx

)1/α
.

We just need to bound ||∆||β,π. This can be done using the moment bounds of Sub-Gaussian random
variables. Assume `(x, θ) is λ-Sub-Gaussian, uniformly for θ, we have

ES∼Dn [||∆||ββ,π] = ES∼DnEθ∼π
[
∆(θ; S)β

]
≤ Cβ

(
2λ

n

)(β−1)/2

where Cβ := βΓ(β/2)√
π

. Therefore, with probability at least 1− δ, we have

||∆||ββ,π ≤
ES∼Dn [||∆||ββ,π]

δ
≤ 1

δ
Cβ

(
2λ

n

)(β−1)/2

,

which implies that

Eρ[∆(θ)] ≤ 1

δ1/β
C

1/β
β

(
2λ

n

)(β−1)/2β

Iα(ρ || π).
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Lemma 8.11. Let X be a λ-Sub-Gaussian random variable in that E[exp(t(X − E[X]))] ≤ exp(λt2/2)
for t ∈ R. We have

E[|X|β] ≤ βΓ(β/2)√
π

(2λ)(β−1)/2.

Proof. Let us first consider the the case when X is positive valued. Let F̄ (x) = Pr(X ≥ x) the tail
probability of X. Since X is λ-Sub-Gaussian, we have

F̄ (x) ≤ exp

(
−x

2

2λ

)
.

Therefore,

E[Xβ] =

∫ ∞
0

xβdF̄ (x)

= β

∫ ∞
0

F̄ (x)xβ−1dx //integration by parts

≤ β
∫ ∞

0
exp

(
−x

2

2λ

)
xβ−1dx //tail bound

=
βΓ(β/2)

2
√
π

(2λ)(β−1)/2.

For general X, we have X = max(X, 0) −max(−X, 0). Applying and combing the bound on each part
gives the result.

https://en.wikipedia.org/wiki/Sub-Gaussian_distribution

http://lear.inrialpes.fr/people/harchaoui/teaching/2013-2014/ensl/m2/lecture6.pdf

We should be able to derive similar bounds from IPM, and RKHS???

Proof.

46

https://en.wikipedia.org/wiki/Sub-Gaussian_distribution
http://lear.inrialpes.fr/people/harchaoui/teaching/2013-2014/ensl/m2/lecture6.pdf
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9 Variational Inference Using Parameteric Families
{sec:para}

In parametric variaional inference, we approximate the target distribution p with a simpler distribution
from a parametric family qθ, indexed with a parameter θ:

min
θ
{KL(qθ || p) := Ex∼qθ [log qθ(x)− log p(x)]} .

A key point is that this optimization does not depend on the normalization constant of p(x). To see this,
assume p(x) = exp(f(x))/Z, where Z =

∫
exp(f(x))dx, we have KL(qθ || p) = Ex∼qθ [log qθ(x) − f(x)] +

logZ. where logZ is a constant that is irrelavant to the optimization of θ, Therefoe, the optimal θ is
equivalently

θ̂ = arg max
θ

Ex∼qθf(x) +H(qθ).

This can be viewed as an entropy regularized optimization. Maximizing the expectation of Ex∼qθ [f(x)]
under qθ, with an entropy regularization on H(qθ).

We will consider gradient descent algorithm for solving it

θ ← θ − ε∇θL(θ),

where ε is a step-size. The key question is then how to estimate the gradient. We will introduce two
major techniques for gradient estimation, including the score function method and the reparameterization
trick. The score function gradient estimator provides an almost universal tool, which does not require to
know gradient information of f , and applicable even when f is not differentiable, or x is discrete valued
(meanwhile, it does not requires that log qθ exists and differentiable). Reparameterization trick, on the
other hand, relies on taking derivative on f , which is often found more efficient when it is available,
because it leverages the gradient information of f .

Theorem 9.1. Assume the support of qθ does not depend on θ, that is, supp(q) = X , and X does not
change with θ. Assume log qθ(x) is differentiable w.r.t. θ on for x ∈ X.

i) For any function f , we have L(θ) := Eqθ [f(x)] is differentiable, and

Ex∼qθ [f(x)] = Ex∼qθ [f(x)∇θ log qθ(x)]. (23){equ:scorefunction}{equ:scorefunction}

This is known as the score function gradient estimator.

ii) For L(θ) := KL(qθ || p), denote by f(x) = log qθ(x)− log p(x). We have

∇θKL(qθ || p) = ∇θ (Ex∼qθ [f(x)]) (24){equ:KLscore}{equ:KLscore}

= Ex∼qθ

[(
log

qθ(x)

p(x)

)
∇θ log qθ(x)

]
, (25)

where the idea is that we do not differentiate θ through f .

Proof. i) Note Ex∼qθ [f(x)] =
∫
X qθ(x)f(x)dx. Because X does not dependent on θ, we have

∇θEx∼qθ [f(x)] =

∫
X
∇θqθ(x)f(x)dx

=

∫
X
qθ(x)∇θ log qθ(x)f(x)dx

= Ex∼qθ [f(x)∇θ log qθ(x)] ,
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where we used the famous fact of ∇θ log qθ(x) = ∇θqθ(x)/qθ(x).

ii) For KL(qθ || p), using chain rule, we have

∇θKL(qθ || p) = ∇θ (Ex∼qθ [f(x)]) + Ex∼qθ [∇θ log qθ(x)],

and we need to show that the second term equals zero:

Ex∼qθ [∇θ log qθ(x)] =

∫
X
qθ(x)

∇θqθ(x)

p(x)
dx =

∫
X
∇θqθ(x)dx = ∇θ(

∫
qθ(x))dx = 0.

See also Lemma 3.4.

Remark 9.1. Both (23) and (24) do not hold when the support of qθ(x) changes with θ. To give an

example, assume qθ(x) =
I(x ∈ [0, θ])

θ
, so that ∇θ log qθ(x) = −1

θ for x ∈ [0, θ]. We have

∇θEqθ [f ] = ∇θ
∫ θ

0

1

θ
f(x)dx =

∫ θ

0

−1

θ2
f(x)dx+

f(θ)

θ
= Eqθ

[
f(x)∇θ log q(x)

]
+
f(θ)

θ
,

where the second term due to the dependency of support on θ. The score function formula only takes the
first term into account.

Following this result, we can construct an unbiased estimator of the gradient by drawing {xi}ni=1 from qθ
and estimate the gradient by

∇θEqθ [f ] ≈ Gscore(θ) :=
1

n

n∑
i=1

f(xi)∇θ log qθ(xi). (26){fig:approxscore}{fig:approxscore}

Running gradient descent of θ with this Monte Carlo gradient estimation yields a general perhaps inference
algorithm. [cite, black box, evaluation strategy, policy gradient, cross entropy].

The formula above can be further generalized by adding an arbitrary “baseline”:

Ex∼qθ [f(x)] = Ex∼qθ [(f(x)− b)∇θ log qθ(x)],

where b is any real number, whose choice does not change the expectation because Eqπ [∇θ log qθ(x)] = 0.
Different baselines, however, does influence the variance of the estimator. It is often convenient to choose
b = f̄ :=

∑n
i=1 f(xi)/n in (26), so that we have

∇θEqθ [f ] ≈ Gscore(θ) :=
1

n

n∑
i=1

(f(xi)− f̄)∇θ log qθ(xi).

Therefore, for points xi that is better than average (f(xi) − f̄ > 0), the gradient update increases its
likelihood by moving along ∇θ log qθ(xi), while for points that are worse than the average (f(xi)− f̄ < 0),
update increases its likelihood by moving along −∇θ log qθ(xi).

What is interesting is that the score function estimator is not only way to estimate gradient. There is
another important class of gradient estimators, known as the reparameterization trick, which provides
significantly different, often much better, estimation.
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Theorem 9.2. Assume x ∼ qθ is realized by x = gθ(ξ), where ξ follows a distribution q0 that is indepen-
dent of θ. Function f(x) is differetiable w.r.t. x. We have

∇θEx∼qθ [f(x)] = Ex=gθ(ξ),ξ∼q0 [∇xf(x)∇θgθ(ξ)] .

This estimator is known as the reparametrization trick, or pathwise gradient estimator.

Proof. Note that
Ex∼qθ [f(x)] = Eξ∼q0 [f(gθ(ξ))].

Applying chain rule:
Ex∼qθ [f(x)] = Eξ∼q0 [∇xf(gθ(ξ))∇θgθ(ξ)].

Compared with the score function estimator in (23), the reparameterized gradient estimator requires that
f(x) is differentiable w.r.t. x and qθ can be “reparameterized”, but does not require that the support of
qθ to be fixed, nor the existence of the density qθ (so the probability mass of qθ can concentrate on a low
dimensional space of Rd, similar to GAN).

The reparameterization trick implies a different Monte Carlo gradient estimator, which yields

∇θL(θ) ≈ Grep(θ) :=
1

n

n∑
i=1

∇xf(xi)∇θgθ(ξi),

where {ξi, xi}ni=1 is i.i.d. drawn by ξi ∼ q0 and xi = gθ(ξi). Compared with the score function estimator
in (??), the reparameterization estimation is often shown to perform much better (for having smaller
variance). Intuitively, we can also see this from the fact that the reparameterized gradient depends on the
gradient ∇xf(x), which provides gradient information on directions for exploring the landscape of f(x).

Why is reparameterization trick (when it is available) is “in general” better than score function? Let us
try to understand this by some problems.

Problem* 9.1 (Comparing Variance of Score-function and Reparameterization Gradient Estimators).
In this problem, we illustrate that reparameterized gradient estimators work better for “smooth” functions
with bounded Lipschitz norm (or bounded gradient), while score function estimators tend to work better
for bounded, but highly oscillated functions (which perhaps appear less commonly in practice).

1) Consider linear functions f(x) = a>x+ b. Compare the variance of Grep(θ) and Gscore(θ) and decide
which of them has smaller variance.

2) Consider function f(x) = 1
ω sin(ω2x), and assume ω is very large (e.g., ω → +∞). Compare the

variance of Grep(θ) and Gscore(θ) and decide which of them has smaller variance.

3) Assume f(x) is Lf -Lipschitz w.r.t x and gθ(ξ) is Lg-Lipschitz w.r.t θ for every ξ, so that ‖∇xf(x)‖2 ≤
Lf and ‖∇θgθ(ξ)‖2 ≤ Lf and for all x, ξ, and θ. Prove that

E[‖Grep(θ)‖22] ≤ 1

n
L2
fL

2
g.

On the other hand, show that the variance of Gscore(θ) can be arbitrarily large in this case.

4) Assume f is bounded, that |f(x)| ≤ Bf , and denote by Iθ the Fisher information matrix of qθ:

Iθ = Ex∼qθ [(∇θ log qθ(x))2] = −covx∼qθ [(∇θ log qθ(x))2].
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We have

E[‖Gscore(θ)‖22] ≤ 1

n
trace(Iθ).

On the other hand, show that the variance of Grep(θ) can be arbitarily large in this case.

Problem* 9.2. In this problem, we illustrate that reparameterized estimators work better when qθ has a
small variance, while score function estimators work better when the variance of qθ is large.

Assume qθ = N (θ, σ2I), where σ2 is the variance.

1) Show (under proper conditions) that when σ → 0+, the variance of Gscore(θ) goes to infinite, while that
of Grep(θ) goes to zero.

2) When σ → +∞, show that the variance of Grep(θ) goes to infinite, while that of Gscore(θ) goes to zero.

Problem* 9.3 (Variational Inference with Mixture of Uniform Distributions). Define Unif(µ, σ) to be
the uniform distribution on set {x : ‖x− µ‖ ≤ σ}. Consider approximating p using a mixture of

qθ =
m∑
i=1

wiUnif(µi, σi),

where θ = [wi, µi, σi]
m
i=1. Design a Monte Carlo gradient descent for estimating the optimal θ. What

might be the potential advantage of such approximation compared with, say, mixture of Gaussian distri-
butions?

9.1 Black Box Optimization

The score function trick provides a highly generic framework for deriving gradient-free optimization al-
gorithms, which has been widely applied on various fields. We introduce two examples, evolutionary
strategy and policy gradient.

9.1.1 Evolutionary Strategy

Evolutionary strategy (ES) is a set of derivative-free, black-box optimization techniques motivated by
ideas of evolution. Mathematically, it is viewed as applying the score function gradient estimation for
optimization.

Let f(x) be an non-convex objective function, whose gradient can not be directly accessed. Instead of
directly solving maxx f(x), we look for a distribution qθ, indexed by some parameter θ, which generates
the maxima of f(x). The optimal θ is obtained by

max
θ

Ex∼qθ [f(x)] =

∫
f(x)qθ(x)dx.

If {qθ} includes δx∗ , where x∗ is the global optima of f(x), then the optimization of θ is equivalent to the
original optimization on x. A typical choice would be qθ = N (µ, Σ), where θ = [µ, Σ].

Using Monte Carlo estimation of score function estimator, we have obtain an iterative algorithm:

θ ← θ + ε
1

m

m∑
i=1

f(xi)∇θ log qθ(xi), {xi}ni=1
i.i.d.∼ qθ.
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In the literature, ES often refers to the case when we optimize µ, while fixing Σ to be a small diagonal
matrix. The case when we optimize µ and Σ jointly is called covariance matrix adaptation evolution
strategy (CMA-ES).

9.1.2 Policy Gradient for Reinforcement Learning

Reinforcement learning is the problem of finding optimal policies for sequential decision making problems,
typically under unknown enviorment. This involves black box optimization for which score function
gradient can be applied to derive policy gradient.

RL is often formulated using Markov decision process. At each time step t, the RL agent observes a state
variable st, and takes an action at according to some policy π(·|st), which is a distribution conditional
on st. The agent receives an incremental reward rt, and the state variable transit to the next step st+1.
Assume this process repeats for T + 1 time steps, and gives a trajectory τ = {st, at, rt}Tt=0. The total
reward associated with trajectory τ is often defined as a discounted sum of the local reward:

R(τ ) =

T∑
t=0

γtrt, (27){equ:disreward}{equ:disreward}

where γt is a discount factor for time step t. The goal is to find an optimal policy π, typically from some
parametric set {πθ : θ ∈ Θ}, to maximize the expected reward function:

max
θ

Eτ∼pπθ [R(τ )],

where we use pπθ to denote the distribution of the trajectory τ when we use policy πθ, whose density has
the form of

pθ({st, at}) = p0(s0)
T∏
t=0

T (st+1 | st, at)πθ(at | st),

where p0 denotes the initial distribution of s0 and T (·|s, a) is the transition probability. Therefore, using
the score function trick, it is not difficult to see that

∇θEτ∼pπθ [R(τ )] = Eτ∼pπθ

[
(R(τ )− b)

T∑
t=0

∇θ log πθ(at|st)

]
,

where R(τ ) is any baseline constant. This gradient can be estimated by Monte Carlo using samples from
policy πθ. This algorithm is called REINFORCE [28]. What is nice is that this formula does not require
to explicitly estimate the unknown transition model T (·|s, a). It is hence called a model-free algorithm.
In comparison, methods that explicitly estimate the transition models and leverage it to estimate and
optimize reward are called model-based methods.

However, further simplification is can be constructed by exploiting the Markov structure and the additive
structure of the reward function R(τ ) in (27). In particular, note that for any t′ < t, we have

Eτ∼pπθ [rt′∇θ log πθ(at|st)] = Eτ∼pπθ [rt′E [∇θ log πθ(at|st) | st]] = 0, for any t′ < t.

Therefore, we can rewrite the gradient into

∇θEτ∼pπθ [R(τ )] = Eτ∼pπθ

[
(Qt − bt)

T∑
t=0

∇θ log πθ(at|st)

]
.
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where Qt =
∑

t′≥t γt′rt′ , and bt is any baseline function that does not depend on at and all the subsequent
trajectory (that is, {at} ∪ {at′ , st′ , rt′}t′>t). This result is often called policy gradient theorem. See the
Sutton & Barto book [25], and Deisenroth et al. [5] (Section 2.4).

10 Stein Variational Methods

Stein’s method is a technique from probability theory for bounding the distance between probability
measures using differential and difference operators. Although the method was initially designed as a
technique for proving central limit theorems, its key idea has recently applied in machine learning for
developing practical computational tools for probabilistic learning and inference. Recent applications
include variational inference, generative modeling, variance reduction, goodness of fit tests, among many
others. We start with an introduction of the Stein’s method in its original form, and then discuss its
application to probabilistic inference and learning.

10.1 Stein’s Method: Overview

Theorem 10.1. Let S = 1√
n

∑n
i=1Xi, where Xi are i.i.d. with mean zero and finite first three order

moments: σ2 = E[X2
1 ] < ∞, and E[|X1|3] < ∞. Let f be a second-order differentiable function and has

bound second order derivative (‖f ′′‖∞ <∞). We have∣∣∣∣E[Sf(S)− σ2f ′(S)]

∣∣∣∣ ≤ 1√
n

∥∥f ′′∥∥∞ E[|X1|3].

Proof. Construct S1 = S − X1√
n

+ X̃1√
n

, where X̃1 is another independent random copy of X1. Note that

S and S1 shares the same distribution as S (and hence (S, S′) is an exchangeable pair), and satisfies
S − S1 = 1√

n
(X1 − X̃1), and S1 is independent with X1, so that E[X1f(S1)] = 0 for any f . The fact that

we are able to construct such an exchange pair is the key of the proof.

E[Sf(S)] =
1√
n

n∑
i=1

E[Xif(S)]

=
√
nE[X1f(S)]

=
√
nE[X1(f(S)− f(S1))].

Applying Taylor expansion, we have

f(S)− f(S1) = f ′(S1)(S − S1) + R(S, S1).

where R(S, S1) =
∫ 1

0 [f ′(S1 + u(S − S1))− f ′(S1)] (S − S1)du.
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Therefore

E[Sf(S)] =
√
nE[X1(f(S)− f(S1))]

=
√
nE[X1f

′(S1)(S − S1)] + ∆ //Define ∆ =
√
nE [X1R(S, S1)]

= E[X1(X1 − X̃1)f ′(S1)] + ∆ //S − S1 = (X1 − X̃1)/
√
n

= E[X2
1f
′(S1)−X1X̃1f

′(S1)] + ∆

= E[X2
1 ]E[f ′(S1)]− E[X1]E[X̃1f

′(S1)] + ∆ //By independence between X1 and X̃1, S1

= σ2E[f ′(S1)] + ∆

= σ2E[f ′(S)] + ∆.

This suggests that
E[Sf(S)− σ2f ′(S)] = ∆.

We just need to bound ∆.

|∆| =
∣∣√nE [X1R(S, S1)]

∣∣
=

∣∣∣∣E [|X1|
∫ 1

0

[
f ′(S1 + u(S − S1))− f ′(S1)

]
(S − S1)du

]∣∣∣∣
≤ E

[
|X1|

∫ 1

0

∥∥f ′′∥∥∞ u(S − S1)2du

]
≤
(∫ 1

0
udu

)
· E
[
|X1|

∥∥f ′′∥∥∞ (S − S1)2
]

=
1

2
E
[
|X1|

∥∥f ′′∥∥∞ (S − S1)2
]

=
1

2
√
n

∥∥f ′′∥∥∞ E
[
|X1|(X1 − X̃1)2

]
=

1

2
√
n

∥∥f ′′∥∥∞ E
[
|X1|3 − 2|X1|X1X̃1 + |X1X̃1|2

]
≤ 1

2
√
n

∥∥f ′′∥∥∞ E
[
|X1|3 + |X1X̃1|2

]
//E[|X1|X1X̃1] = E[|X1|X1]E[X̃1] = 0

≤ 1√
n

∥∥f ′′∥∥∞ E
[
|X1|3],

where the last step is based on Generalized mean inequality: E[|X|α]1/α ≤ E[|X|β]1/β for any α < β,

E[|X1X̃1|2] = E[|X1]E[|X̃1|2] = E[|X1]E[|X1|2] ≤ E[|X1|3]1/2E[|X1|3]2/3 = E[|X1|3].

See more https://arxiv.org/pdf/1109.1880.pdf
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A Measure Theory, Probability Measures, Random Variables

A measurable space (Ω,A)consists of a set Ω, and A is a σ-algebra on Ω, which is a collection of
subsets of Ω that includes the empty set ∅ and Ω itself, and is closed under complement, and is closed
under countable unions (this definition implies that it also includes the empty subset and that it is closed
under countable intersections). Each element of A is called a measurable set, or an event.

In most cases we consider, Ω is a finite Euclidean space Rd, or its subset, for which we always assume
A is generated from open sets (or, equivalently, from closed sets) through the operations of countable
union, countable intersection, and relative complement. This σ-algebra, denoted by B(Rd), is the smallest
possible σ-algebra that includes all open sets (and hence called Borel σ-algebra) on Rd. We will simply
use Rd to denote measurable space (Rd,B(Rd)).

A measure µ on (Ω,A) is a function from A to R+ ∪ {0,+∞}, which maps each measurable set A ∈ A
to a non-negative number that represents the “volume” or “size” of A. A measure should satisfy a few
intuitive properties, including µ(∅) = 0, µ(∪iAi) =

∑
i µ(Ai) when {Ai} are pairwise disjoint. We may

use P or Q to denote probability measures.

A measure is called a finite measure if µ(Ω) < ∞. If a measure satisfies µ(Ω) = 1, it is called a
probability measure, (probability) distribution law, or simply (probability) distribution. In
this case, the triplet (Ω,A, µ) is called a probability space.

Lebesgue Measure on Rd (equipped with its Borel σ-algebra) is the typical measure we encounter
in multiple dimensional integration, which assigns to every rectangle its d-dimensional volume in the
ordinary sense.
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The (unit) Dirac measure at δ ∈ Ω, denoted by δa is defined to be δa = I(x ∈ A), that is,

δa(A) =

{
1 if a ∈ A,
0 if a /∈ A.

Dirac measure can be equipped with any σ-algebra that includes {a}. We may denote δa by δ when
a = 0 ∈ Ω.

When the size Ω is finite, the counting measure (equipped with power set σ-algebra A = 2Ω) assigns
each subset of Ω the number of elements in it, that is, for A = {a1, . . . , am} ⊂ Ω, we have µ(A) = m.

A measurable function is a function from a measurable space (Ω1,A1) to measurable space (Ω1,A1)
such that the preimage of any measurable set is measurable, that is, if A ∈ A2, we must have f−1(A) ∈ A1,
where f−1 denotes the inverse map of f .

Given a measure µ and a measurable function f on a measurable space (Ω,A), one can define the
Lebesgue integral

∫
Ω f(x)dµ(x), which may be abbreviated as

∫
Ω fdµ or

∫
fdµ The rigorous definition

of Lebesgue integral is based on decomposing f as limits of weighted sums of indicator functions, e.g.,
f(x) ≈

∑
iwiI(x ∈ A) (here I(z) denotes the 0/1-indicator function, which equals 0 if z = 0 and 1

otherwise), and elementary rules like µ(A) =
∫
I(x ∈ A)dµ, and

∫
af(x)dµ = a

∫
f(x)dµ for a ∈ R. When

µ is Lebesgue measure, we simple write
∫
f(x)dµ(x) =

∫
f(x)dx.

A function f is called Lebesgue-integrable w.r.t. µ if
∫
|f |dµ <∞.

A random variable X is a measurable function from a probability space (Ω,A,P) (called the sample
space) to another measurable space (called the state space). The state space usually taken to be a real
number of vector Rd with the Borel σ-algebra, so X : Ω → Rd. For simplicity, let us always consider a
Rd-valued random variables.

For an Rd-valued random variable X, every element ω ∈ Ω is mapped to a value X(ω) ∈ Rd. For any
measurable set B in Rd, its preimage X−1(ω) := {ω ∈ Ω|X(ω) ∈ B} is a measurable set (and event)
in (Ω,A, µ) by definition. Here X−1 denotes the inverse map of X (remember that X is a measurable
function technically). X−1(ω) is often also written as {X ∈ B}, and is sometimes just called “the event
that X ∈ B.”

Each Rd-random variable X is characterized by its probability distribution or law, denoted by PX , on Rd,
defined by PX(B) = P(X ∈ B).

The statistical properties of the random variable X is fully characterized by its law PX . Notice here that
PX is a measure (in fact a probability measure) on Rd, as opposed to the original measure P, which is
a measure on (Ω,A). In most cases, the original probability space (ω,A,P) remains in the background,
hidden or unused, and one works directly with the much more tangible probability space on Rd (which is
technically (Rd,B(Rd),PX)).

For an R-valued random variable X, The function FX : R→ [0, 1], defined by

FX(x) = PX((−∞, x]) = P(X ≤ x),

is called the cumulative distribution function (CDF) of X. Here we use the lower case x to denote a
deterministic value, and upper case X a random variable. F is also simply referred as the distribution
function, but it should not be confused with the distribution, or law of X, which is PX . Meanwhile, the
probability law PX of a random variable X is uniquely determined by the CDF FX .
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When the image (or range) X(Ω) := {X(ω) : ω ∈ Ω} of X is finite or countably infinite, the random
variable is called a discrete random variable, and its distribution can be described by a probability
mass function pX(x) = P(X = x), which assigns a probability to each value in the image of X.

If the image is uncountably infinite then X is called a continuous random variable. The probability
density function (PDF) of X, if it exits, is the function pX that satisfies

P(X ∈ B) =

∫
B
pX(t)dt,

for all measurable set B.
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B Rademacher Complexity

Let P be a probability measure, and Pn be an empirical measure of an i.i.d. sample S = {x1, . . . , xn} of
size n drawn from P . Define

Ûn,P (F ; S) := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(xi)− EP [f(x)]

∣∣∣∣∣ ,
and Ûn is called empirical representiveness of function class F under measure P . Taking the expectation:

Un,P (F) := EP [Ûn,P (F ; S)] = EP

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(xi)− EP [f(x)]

∣∣∣∣∣
]
,

where Un is called the representiveness of function class F under measure P . Note that Markov inequality,
Un(F)→ 0 implies that Ûn(F)

p−→ 0.

Rademacher complexity provides a powerful approach to upper bound the representiveness. Define the
empirical Rademacher complexity to be

R̂n,P (F , S) = Eσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
,

where σi are i.i.d. random variables with Pr(σi = 1) = Pr(σi = −1) = 1/2; they are called Rademacher
random variables in this context. Expectation Eσ[·] is w.r.t. {σi}. The Rademacher complexity is

Rn,P (F) = EP [R̂n,P (F , S)] = EPEσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
,

where EP [·] is w.r.t. S = {xi}.

Lemma B.1. The expected representativeness is upper bounded by Rademacher complexity:

Un,P (F) ≤ 2Rn,P (F).
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Proof.

E{xi}∼P

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(xi)− EP [f(x)]

∣∣∣∣∣
]

= E{xi}∼P

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(xi)− EP [f(x′i)])

∣∣∣∣∣
]

≤ E{xi,x′i}∼P

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(xi)− f(x′i))

∣∣∣∣∣
]

= E{xi,x′i}∼PEσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σi(f(xi)− f(x′i))

∣∣∣∣∣
]

//xi, x
′
i are symmetric

≤ E{xi,x′i}∼PEσ

[
sup
f∈F

(∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

σif(x′i))

∣∣∣∣∣
)]

≤ E{xi,x′i}∼PEσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣+ sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(x′i))

∣∣∣∣∣
]

= 2E{xi}∼PEσ

[∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]

= 2Rn,P (F).

By Markov inequality, we can already provide a high probability bound of Ûn,P (F ; S) using Rademacher
complexity:

Pr
(
Ûn,P (F ; S) ≥ ε

)
≤
Un,P (F)

ε
≤

2Rn,P (F)

ε
.

This bound, however, can be significantly improved when the function class F is uniformly bounded, that
is, ||f ||∞ ≤M , ∀f ∈ F for some M <∞. This can be achieved using McDiarmid inequality.

Theorem B.2 (McDiarmid Inequality). Assume function ρ(x1, . . . , xn) satisfies

sup
x1,...,xn;x′i

|ρ(x1, . . . , xi, . . . , xn)− ρ(x1, . . . , xi, . . . , , xn)| ≤ ci, ∀i = 1, . . . , n,

where ci < ∞ is some constant. Effectively, this suggests that ρ(x1, . . . , xn) is 1-Lipschitiz w.r.t. the
weighted 0/1 distance d0(x, x′) :=

∑
i ciI(xi − x′i).

Then when x1, . . . , xn are i.i.d. drawn from some distribution P , we have

Pr
(
ρ(x1, . . . , xi, . . . , xn)− EP [ρ(x1, . . . , x

′
i, . . . , xn)] ≥ ε

)
≤ exp

(
− 2ε2∑n

i=1 c
2
i

)

Proof. Using Martingale method.

ρ(x)− E[ρ(x′)] =

n∑
i=1

Ex′∼P [ρ([x1:i;x
′
i+1:n])− ρ([x1:i−1;x′i:n])] :=

n∑
i=1

∆i(x1:i)

where each |∆i(xi:i)| ≤ ci and
E[∆i | x1:i−1] = 0.
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We have

E[exp(t(ρ(x)− E[ρ(x)]))] ≤ E[exp(t
n∑
i=1

∆i)]

= E[E[exp(t∆n + t

n−1∑
i=1

∆i | x1:n−1]]

≤ exp(
c2t2

2
)

TODO.{lem:mgfquadratic}

Lemma B.3. Let X be a random variable on R with finite moment generating function E[exp(tX)] for
some t ∈ R+, we have

Pr(X ≥ ε) ≤ inf
t≥0

E[exp(tX)]

exp(tε)
.

Proof. Applying Markov inequality on exp(tX).

Lemma B.4. If random variable X is bounded in interval [a, b] ⊂ R, we have

φ(t) := logE[exp(tX)] ≤ µt+
(a− b)2t2

8
.

Combining with Lemma B.3, we have

Pr(X − µ ≥ ε) ≤ exp

(
− 2ε2

(b− a)2

)
.

Proof. Taking the derivative:

φ′(t) =
E[exp(tX)X]

E[exp(tX)]
= E[X̃]

φ′′(t) =
E[exp(tX)X2]

E[exp(tX)]
−
(
E[exp(tX)X]

E[exp(tX)]

)2

= var(X̃),

where X̃ is the random variable with the exponentially tiltled law: P̃ (dx) = exp(tx)P (dx)
E[exp(tX)] , where P is the

law of X. Because X is bounded in [a, b], X̃ must also be contained in [a, b]. Therefore, we have

φ′′(t) = var(X̃) ≤ (a− b)2/4.

On the other hand, note that φ(0) = 0 and φ′(t) = E[X] = µ. We have

φ′(t) = φ′(0) +

∫ t

0
φ′′(t)dt ≤ µ+ (a− b)2t/4.

φ(t) = φ(0) +

∫ t

0
φ′(t)dt ≤

∫ t

0
(µ+ (a− b)2t/4)dt = µt+ (a− b)2t2/8.

And hence by Lemma B.3

Pr(X − µ ≥ ε) ≤ inf
t≥0

exp(φ(t)− t(ε+ µ)) ≤ inf
t≥0

exp

(
(a− b)2t2

8
− tε

)
= exp

(
− 2ε2

(a− b)2

)
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B.1 Sub-Gaussian Random Variables

Definition B.5. A random variable X on R is called sub-Gaussian with variance proxy σ2 if

E[exp(t(X − EX))] ≤ exp

(
σ2t2

2

)
In this case, we write X ∼ SubG(σ2).

Theorem B.6. Let X ∼ SubG(σ2). Then for any t > 0, it holds

max{Pr(X ≥ t), Pr(X ≤ −t)} ≤ exp

(
− t2

2σ2

)
,

Proof.
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C Convex Conjugate
{sec:convexity}

We introduce some background on convex conjugate. For any function f : Rd → R ∪ {±∞}, its convex
conjugate f∗ is defined by

f∗(x) = sup
t
{t>x− f(t)}.

We may apply the definition to get the double conjugate f∗∗:

f∗∗(x) = sup
t
{t>x− f∗(t)}.

By Fenchel-Moreau theorem, f = f∗∗ if and only if f is convex and lower semi-continuous.

Theorem C.1. For any function f , we have f∗∗ ≤ f∗. In addition, if f is convex and lower semi-
continuous, we have f∗∗ = f , that is,

f(x) = sup
t

{
t>x− f∗(t)

}
.

Proof.

f∗∗(x) = sup
t

{
t>x− f∗(t)

}
= sup

t

{
t>x− sup

s

{
t>s− f(s)

}}
= sup

t
inf
s

{
t>x− t>s+ f(s)

}
≤ inf

s
sup
t

{
t>x− t>s+ f(s)

}
= inf

s

{
sup
t
t>(x− s) + f(s)

}
= inf

s
{f(s) : s.t. x = s}

= f(x),

where in the last two steps, we use the fact that

sup
t
t>(x− s) =

{
+∞ if x 6= s

0 if x = s.

Denote by L(s, t) = t>(x− s) + f(s). Then f∗∗ = f is equivalent to

sup
t

inf
s
L(s, t) = inf

s
sup
t
L(s, t),

which is expected to be true when L(s, t) is continuous, and convex on s and concave on t. The rigorous
proof is more technical.

For differentiable convex functions, there is an simpler elementary argument for convex conjugacy. Note
that for convex functions f , all the tangent lines are beneath the curve of f , that is,

f(x) ≥ f(y) + (x− y)>∇f(y), ∀x, y.
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Meanwhile, the equality is achieved when x = y. This suggests that

f(x) = sup
y

{
f(y) + (x− y)>∇f(y)

}
.

This simple representation is fact equivalent to the dual representation shown above. To see this, note
that

f(x) = sup
y

{
f(y) + (x− y)>∇f(y)

}
= sup

y

{
x>∇f(y)− (y>∇f(y)− f(y))

}

Define t = ∇f(y) and assume ∇f is an one-to-one map and invertible. Denote by y = g(t) = ∇f−1(t).
We have

f(x) = sup
y

{
x>∇f(y)− (y>∇f(y)− f(y))

}
= sup

t

{
x>t− (g(t)>t− f(g(t)))

}
.

from which we can read that f∗(t) = g(t)>t− f(g(t))) and the optimality is achieved when x = y, which
is equivalent to ∇f(x) = t.
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D Learning and Inference as Approximating Probabilities

Probabilistic modeling provides a predominant framework for reasoning under certainty. Essentially all
learning and inference problems can be reduced to matching or approximating probabilities from one form
to other one. The forms of probability that appears mostly falls into one of the three categories.

Empirical Data Empirical observation is often available to us through a set of data points {xi}, where
each xi is vector, representing an objective, in some space. For example, in computer vision, we observe
a set of images, so that each xi represent an image, with each coordinate representing a pixel. In natural
language, each xi is a sequence of words. In speech processing, each xi represents a wave signal, which is
a time series. We can represent data as an empirical distribution:

p(x) =
1

n

n∑
i=1

δ(x− xi),

where δ denotes a Dirac delta function. This assigns a uniform probability on each data point xi, while
zero probability everywhere else.

For statistical learning, we are often interested in constructing smoother distributions to represent the
data, so that we can assign non-zero probabilities to data points that we do not observe, based on its
similarity with points inside the data set. The ability of building useful models for unseen data is called
generalization.

Simple, Tractable Distributions There exists a set of classical distributions for which (almost)
everything is computationally tractable. For example, Gaussian distribution

It is tractable to calculate the density function,

p(x; µ,Σ) =
1

(2π det(Σ))d/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
.

Not that the density is properly normalized, with
∫
p(x; µ,Σ)dx = 1.

It is tractable to draw sample from Gaussian. Let ξ ∼ N (0, I), then

x := Σ1/2ξ + µ ∼ N (µ, Σ).

It is tractable to calculate the polynomial moments and moment generating function:

E[x] = µ, cov(x) = E[(x− µ)(x− µ)>] = Σ,

and

E[exp(t>x)] = exp

(
t>µ+

1

2
t>Σt

)
.

But for more complex functions f , it may be intractable to calculate Ep[f ], even when p is Gaussian.

Density function. The distribution is available through its density function p(x).

Simulator. The distribution is available through a simulator that generates samples from p. However, the
density of p is not available.
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A special case of simulator is empirical observation. The distribution is observed through an empirical
data {xi}, viewed as an empirical distribution p(x) =

∑n
i=1 δ(x − xi)/n. More generally, one may also

observe a set of weighted sample {xi, wi}, where wi ∈ R, wi ≥ 0,
∑

iwi = 1, and the empirical distribution
p(x) =

∑n
i=1wiδ(x− xi). This appears in, for example, reinforcement learning.

Inference and learning then reduces to transforming distributions from one form to another one. Including

1. Model estimation (learning). Given an empirical data {xi}, viewed as an empirical distribution
p(x) =

∑n
i=1 δ(x− xi)/n. We want to find a parametric (or nonparametric model).

2. Bayesian inference. Given a distribution in the form of density p(x), a sample based representation.

3. Black-box optimization and reinforcement learning. In many cases, we have access to an black box
function J(z) which represents the reward given a input parameter z, and we want to find the
optimal z to optimize J . A particular case of this reinforcement learning.

The nonconvex optimization problem can be viewed as special cases of sampling problem by using
simulated annealing trick.

(Normalized) Density Simulator Data
(Unormalized) Density Parametric VI Amortized SVGD MCMC, SVGD

Simulator MLE N/A N/A
Data MLE (CD for unnormalized densities) GAN Compression? (Herding)

Input Output Metric Algorithm Reference Note

Sample Generator

(Neural) JS divergence GAN Goodfellow et al. [8]
(Neural) f divergence f-GAN Nowozin et al. [19]

(Neural) IPM W-GAN Arjovsky et al. [1]
Maximum mean discrepancy MMD-GAN Li et al. [15], Dziugaite et al. [7]

Energy distance Cramer-GAN Bellemare et al. [4]

Sample Unnormalized

KL divergence MLE
KL divergence (approximate) MCMC-MLE / CD / Variational Bayesian

Composite KL divergence Composite Likelihood
Fisher divergence Contrastive divergence (CD)
Stein discrepancy Stein CD
pseudolikelihood CD with parallel Gibbs

Unormalized Sample

KL divergence SVGD / Langevin / reversible MCMC
Stein discrepancy Stein points

Maximum mean discrepancy Herding
Wasserstein distance Wasserstein Variational Gradient Descent

Energy distance ?

Unormalized Generator

KL divergence Amortized SVGD / Amortized MCMC / Adversarial Bayesian
Neural Stein discrepancy Operator VI

MMD ?
Wasserstein

Unormalized Tractable
KL divergence (parametric) VI
χ2 − divergence adaptive importance sampling, etc
f -divergence
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